login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A116244
Numbers k such that k * (k + 8) is the concatenation of two numbers m and m-7.
6
94, 461, 532, 714, 818, 994, 3424, 6569, 9994, 90903, 99994, 980198, 999994, 3636357, 6363636, 9999994, 41176464, 58823529, 99999994, 413533834, 426573426, 428571422, 432620005, 567379988, 571428571, 573426567
OFFSET
1,1
COMMENTS
From Robert Israel, Aug 22 2023: (Start)
Numbers k = a*c-1 such that for some positive integers a,b,c,d,e we have
10^e + 1 = a*b
10^(e-1) <= c*d < 10^e
a*c + 6 = b*d.
Includes 10^k-6 for k >= 2. (End)
LINKS
MAPLE
F:= proc(d) local R, t, alpha, beta, gamma, delta, B, C, n, m, i0, i, gamma0, delta0;
R:= NULL;
t:= 10^d+1;
for alpha in numtheory:-divisors(t) do
beta:= t/alpha;
if igcd(alpha, beta) > 1 then next fi;
delta0:= 6/beta mod alpha;
gamma0:= (beta*delta0-6)/alpha;
B:= 2*alpha*gamma0 + 6;
C:= gamma0*delta0 - 10^(d-1) - 7;
if C < 0 then i0:= 0 else i0:= ceil((-B + sqrt(B^2-4*t*C))/(2*t)) fi;
for i from i0 do
gamma:= gamma0 + i*beta;
delta:= delta0 + i*alpha;
m:= gamma*delta;
if m -7 >= 10^d then break fi;
if m - 7 >= 10^(d-1) then R:= R, alpha*gamma-1 fi;
od
od;
sort(convert({R}, list))
end proc:
seq(op(F(d)), d=1..10); # Robert Israel, Aug 22 2023
MATHEMATICA
a[n_] := Module[{solutions = {}, kvalues, e = 2}, While[Length[solutions] < n, sol = Solve[{a*b == 10^e + 1, 10^(e - 1) <= c*d < 10^e, a*c + 6 == b*d, a > 0, b > 0, c > 0, d > 0}, {a, b, c, d}, Integers]; kvalues = (a*c - 1) /. sol; solutions = Union[solutions, kvalues]; e++]; Take[solutions, n]]; a[26] (* Robert P. P. McKone, Aug 22 2023 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Giovanni Resta, Feb 06 2006
STATUS
approved