Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Sep 08 2022 08:45:24
%S 0,16,384,6144,81920,983040,11010048,117440512,1207959552,12079595520,
%T 118111600640,1133871366144,10720238370816,100055558127616,
%U 923589767331840,8444249301319680,76561193665298432,689050742987685888
%N a(n) = 8^n * n*(n+1).
%H Vincenzo Librandi, <a href="/A116166/b116166.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (24,-192,512).
%F G.f.: 16*x/(1-8*x)^3. - _Vincenzo Librandi_, Feb 28 2013
%F a(n) = 24*a(n-1) - 192*a(n-2) + 512*a(n-3). - _Vincenzo Librandi_, Feb 28 2013
%F a(n) = 16*A081138(n+1). - _Bruno Berselli_, Feb 28 2013
%F E.g.f.: 16*x*(1 + 4*x)*exp(8*x). - _G. C. Greubel_, May 11 2019
%F From _Amiram Eldar_, Jul 20 2020: (Start)
%F Sum_{n>=1} 1/a(n) = 1 - 7*log(8/7).
%F Sum_{n>=1} (-1)^(n+1)/a(n) = 9*log(9/8) - 1. (End)
%t Table[(n^2 + n) 8^n, {n, 0, 30}] (* _Harvey P. Dale_, Mar 09 2011 *)
%t CoefficientList[Series[16 x/(1 - 8 x)^3, {x, 0, 30}], x] (* _Vincenzo Librandi_, Feb 28 2013 *)
%o (Magma) [(n^2+n)*8^n: n in [0..30]]; // _Vincenzo Librandi_, Feb 28 2013
%o (PARI) a(n)=(n^2+n)*8^n \\ _Charles R Greathouse IV_, Feb 28 2013
%o (Sage) [8^n*n*(n+1) for n in (0..30)] # _G. C. Greubel_, May 11 2019
%o (GAP) List([0..30], n-> 8^n*n*(n+1)) # _G. C. Greubel_, May 11 2019
%Y Cf. A007758, A036289, A081138, A128796.
%K nonn,easy
%O 0,2
%A _Mohammad K. Azarian_, Apr 08 2007