login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A116155 Triangle T(n,k) defined by: T(0,0)=1, T(n,k)=0 if k < 0 or k > n, T(n,k) = T(n-1,k-1) + k*T(n-1,k) + Sum_{j>=1} T(n-1,k+j}. 1
1, 0, 1, 1, 1, 1, 2, 3, 3, 1, 7, 9, 10, 6, 1, 26, 33, 36, 29, 10, 1, 109, 135, 145, 134, 70, 15, 1, 500, 609, 645, 633, 430, 146, 21, 1, 2485, 2985, 3130, 3142, 2521, 1182, 273, 28, 1, 13262, 15747, 16392, 16561, 14710, 8733, 2849, 470, 36, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,7

LINKS

G. C. Greubel, Rows n = 0..16 of triangle, flattened

FORMULA

Sum_{k=0..n} T(n,k) = T(n+1,1) = A098742(n+2).

EXAMPLE

Triangle begins:

      1;

      0,     1;

      1,     1,     1;

      2,     3,     3,     1;

      7,     9,    10,     6,     1;

     26,    33,    36,    29,    10,    1;

    109,   135,   145,   134,    70,   15,    1;

    500,   609,   645,   633,   430,  146,   21,   1;

   2485,  2985,  3130,  3142,  2521, 1182,  273,  28,  1;

  13262, 15747, 16392, 16561, 14710, 8733, 2849, 470, 36, 1;

MATHEMATICA

T[0, 0]:= 1; T[n_, k_]:= If[k<0 || k>n, 0, T[n-1, k-1] + k*T[n-1, k] + Sum[T[n-1, k+j], {j, 1, n-k-1}]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, May 10 2019 *)

PROG

(PARI) {T(n, k) = if(k==0 && n==0, 1, if(k<0 || k>n, 0, T(n-1, k-1) + k*T(n-1, k) + sum(j=1, n-k-1, T(n-1, k+j))))}; \\ G. C. Greubel, May 10 2019

CROSSREFS

Sequence in context: A323850 A236937 A323748 * A144149 A097005 A068008

Adjacent sequences:  A116152 A116153 A116154 * A116156 A116157 A116158

KEYWORD

nonn,tabl

AUTHOR

Philippe Deléham, Apr 15 2007

EXTENSIONS

Term a(47) corrected in data by G. C. Greubel, May 12 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 1 09:13 EDT 2022. Contains 357140 sequences. (Running on oeis4.)