Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #31 Jul 19 2019 14:26:32
%S 1,1,1,3,2,1,10,9,3,1,41,40,18,4,1,196,205,100,30,5,1,1057,1176,615,
%T 200,45,6,1,6322,7399,4116,1435,350,63,7,1,41393,50576,29596,10976,
%U 2870,560,84,8,1,293608,372537,227592,88788,24696,5166,840,108,9,1
%N Triangle T, read by rows, equal to Pascal's triangle to the matrix power of Pascal's triangle, so that T = C^C, where C(n,k) = binomial(n,k) and T(n,k) = A000248(n-k)*C(n,k).
%C Column 0 = A000248 (Number of forests with n nodes and height at most 1).
%C Column 1 = A052512 (Number of labeled trees of height 2).
%C Row sums = A080108 (Sum_{k=1..n} k^(n-k) * C(n-1,k-1)).
%C Central terms = A116072(n) = (n+1) * A000108(n) * A000248(n).
%C From _Peter Bala_, Sep 13 2012: (Start)
%C For commuting lower unitriangular matrix A and lower triangular matrix B we define A raised to the matrix power B, denoted by A^B, to be the lower unitriangular matrix Exp(B*Log(A)). Here Exp denotes the matrix exponential defined by the power series
%C Exp(A) = 1 + A + A^2/2! + A^3/3! + ...
%C and the matrix logarithm Log(A) is defined by the series
%C Log(A) = (A-1) - 1/2*(A-1)^2/2 + 1/3*(A-1)^3 - ....
%C Let A = [f(x),x] and B = [g(x),x] be exponential Riordan arrays in the Appell subgroup and suppose f(0) = 1. Then A and B commute and A^B is the exponential Riordan array [exp(g(x)*log(f(x))),x], also belonging to the Appell group. In the present case we are taking A = B = [exp(x),x], equal to the Pascal triangle A007318.
%C For any lower unitriangular matrix A (with, say, rational entries) the infinite tower of powers A^(A^(A^...))) is well-defined (and also has rational entries). An example is given in the Formula section.
%C (End)
%H Paul D. Hanna, <a href="/A116071/b116071.txt">Table of n, a(n) for n = 0..1080 (rows 0..45 of flattened triangle).</a>
%F E.g.f.: exp( x*exp(x) + x*y ).
%F From _Peter Bala_, Sep 13 2012: (Start)
%F Exponential Riordan array [exp(x*exp(x)),x] belonging to the Appell group. Thus the e.g.f. for the k-th column of the triangle is x^k/k!*exp(x*exp(x)).
%F The inverse array, denote it by X, is a signed version of A215652. The infinite tower of matrix powers X^(X^(X^(...))) equals the inverse of Pascal's triangle.
%F (End)
%F O.g.f.: Sum_{n>=0} x^n / (1 - x*(n+y))^(n+1). - _Paul D. Hanna_, Aug 03 2014
%F G.f. for row n: Sum_{k=0..n} binomial(n,k) * (k + y)^(n-k) for n>=0. - _Paul D. Hanna_, Aug 03 2014
%F T(n,k) = Sum_{j=0..n-k} C(n,j) * C(n-j,k) * j^(n-k-j) = A000248(n-k)*C(n,k). - _Paul D. Hanna_, Aug 03 2014
%F Infinitesimal generator is A216973. - _Peter Bala_, Feb 13 2017
%e E.g.f.: E(x,y) = 1 + (1 + y)*x + (3 + 2*y + y^2)*x^2/2!
%e + (10 + 9*y + 3*y^2 + y^3)*x^3/3!
%e + (41 + 40*y + 18*y^2 + 4*y^3 + y^4)*x^4/4!
%e + (196 + 205*y + 100*y^2 + 30*y^3 + 5*y^4 + y^5)*x^5/5! +...
%e where E(x,y) = exp(x*y) * exp(x*exp(x)).
%e O.g.f.: A(x,y) = 1 + (1 + y)*x + (3 + 2*y + y^2)*x^2
%e + (10 + 9*y + 3*y^2 + y^3)*x^3
%e + (41 + 40*y + 18*y^2 + 4*y^3 + y^4)*x^4
%e + (196 + 205*y + 100*y^2 + 30*y^3 + 5*y^4 + y^5)*x^5 +...
%e where
%e A(x,y) = 1/(1-x*y) + x/(1-x*(y+1))^2 + x^2/(1-x*(y+2))^3 + x^3/(1-x*(y+3))^4 + x^4/(1-x*(y+4))^5 + x^5/(1-x*(y+5))^6 + x^6/(1-x*(y+6))^7 + x^7/(1-x*(y+7))^8 +...
%e Triangle begins:
%e 1;
%e 1, 1;
%e 3, 2, 1;
%e 10, 9, 3, 1;
%e 41, 40, 18, 4, 1;
%e 196, 205, 100, 30, 5, 1;
%e 1057, 1176, 615, 200, 45, 6, 1;
%e 6322, 7399, 4116, 1435, 350, 63, 7, 1;
%e 41393, 50576, 29596, 10976, 2870, 560, 84, 8, 1;
%e 293608, 372537, 227592, 88788, 24696, 5166, 840, 108, 9, 1;
%e 2237921, 2936080, 1862685, 758640, 221970, 49392, 8610, 1200, 135, 10, 1; ...
%t (* The function RiordanArray is defined in A256893. *)
%t RiordanArray[Exp[# Exp[#]]&, #&, 10, True] // Flatten (* _Jean-François Alcover_, Jul 19 2019 *)
%o (PARI) /* By definition C^C: */
%o {T(n,k)=local(A, C=matrix(n+1,n+1,r,c,binomial(r-1,c-1)), L=matrix(n+1,n+1,r,c,if(r==c+1,c))); A=sum(m=0,n,L^m*C^m/m!); A[n+1,k+1]}
%o for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
%o (PARI) /* From e.g.f.: */
%o {T(n,k)=local(A=1);A=exp( x*y + x*exp(x +x*O(x^n)) );n!*polcoeff(polcoeff(A, n,x),k,y)}
%o for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
%o (PARI) /* From o.g.f. (_Paul D. Hanna_, Aug 03 2014): */
%o {T(n,k)=local(A=1);A=sum(k=0, n, x^k/(1 - x*(k+y) +x*O(x^n))^(k+1));polcoeff(polcoeff(A, n,x),k,y)}
%o for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
%o (PARI) /* From row polynomials (_Paul D. Hanna_, Aug 03 2014): */
%o {T(n,k)=local(R);R=sum(k=0,n,(k+y)^(n-k)*binomial(n,k));polcoeff(R,k,y)}
%o for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
%o (PARI) /* From formula for T(n,k) (_Paul D. Hanna_, Aug 03 2014): */
%o {T(n,k) = sum(j=0,n-k, binomial(n,j) * binomial(n-j,k) * j^(n-k-j))}
%o for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
%Y Cf. A000248, A052512, A080108, A116072, A215652.
%Y Cf. A080108, A216689, A240165, A245834, A245835, A216973.
%K nonn,tabl
%O 0,4
%A _Paul D. Hanna_, Feb 03 2006