login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A115933
Numbers k such that k^3 contains a pandigital substring.
5
2326, 3909, 5196, 5402, 7061, 7616, 8402, 8496, 8499, 9048, 13565, 15194, 15298, 15841, 19304, 19429, 20516, 21669, 23260, 23572, 23875, 23936, 24299, 24772, 24952, 25182, 25281, 26139, 26499, 26602, 26818, 26832, 27287, 27433, 27757
OFFSET
1,1
EXAMPLE
19429^3 = 73(3417629058)9.
PROG
(Python)
def haspan(s): return any(len(set(s[i:i+10]))==10 for i in range(len(s)-9))
print([m for m in range(30000) if haspan(str(m**3))]) # Michael S. Branicky, Feb 28 2021
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Giovanni Resta, Feb 06 2006
STATUS
approved