

A115852


Dihedral D3 elliptical invariant transform on A000045: a[n+1]/a[n]= Phi^4=((1+Sqrt[5])/2)^4.


0



0, 0, 4, 20, 156, 1024, 7140, 48620, 334084, 2287656, 15685560, 107495424, 736823880, 5050163160, 34614602500, 237251310140, 1626146516820, 11145769206784, 76394251284780, 523613954825156, 3588903524021764
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

A D4 elliptical invariant transform gives a ratio of Phi^4. Ratios from the Dihedral transforms are: D1>Phi D2>1+Phi=Phi^2 D3>Phi^3 D4>Phi^4


LINKS

Table of n, a(n) for n=0..20.


FORMULA

b[n]=A000045[n] g[x]=(x^41)^2/(4*x^4): D4 dihedral elliptical invariant function a(n) = Floor[g[b[n]]


MATHEMATICA

F[0] = 0; F[1] = 1; F[n_] := F[n] = F[n  1] + F[n  2] g[x_] = (x^4  1)^2/(4*x^4) a = Table[ Floor[g[F[n]]], {n, 1, 25}] Table[N[a[[n + 1]]/a[[n]]], {n, 1, Length[a]  1}]


CROSSREFS

Cf. A000045, A079962.
Sequence in context: A335627 A119022 A006682 * A058381 A094651 A065526
Adjacent sequences: A115849 A115850 A115851 * A115853 A115854 A115855


KEYWORD

nonn,uned


AUTHOR

Roger L. Bagula, Mar 13 2006


STATUS

approved



