|
|
A115747
|
|
Numbers n such that phi(n) + sigma(n) = 5/2*n.
|
|
1
|
|
|
18, 20, 88, 368, 1504, 24448, 98048, 5238976, 25161728, 2730992944, 33995232256, 412316336128, 1391737114624, 7732492570624
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
If p = 3*2^(m-1)-1 is an odd prime then 2^m*p is in the sequence because phi(2^m*p) = 2^(m-1)*(3*2^(m-1)-2), sigma(2^m*p) = (2^(m+1)-1)*(3*2^(m-1)) so phi(2^m*p)+sigma(2^m*p) = 2^(m-1)*(3* 2^(m-1)-2)+(2^(m+1)-1)*(3*2^(m-1)) = 3*2^(2m-2)-2^m+3*2^(2m)-3*2^ (m-1) = 2^(m-1)*(3*2^(m-1)-2+3*2^(m+1)-3) = 2^(m-1)*(3*5*2^(m-1)-5) = 5/2*2^m*(3*2^(m-1)-1) = 5/2*(2^m*p). Except 18 & 5238976 all known terms of the sequence are of the form 2^m*(3*2^(m-1)-1), where (3*2^(m-1)-1) is prime.
a(15) > 10^13. - Giovanni Resta, Jul 13 2015
|
|
LINKS
|
Table of n, a(n) for n=1..14.
|
|
EXAMPLE
|
25161728 is in the sequence because phi(25161728) + sigma(25161728) = 12578816 + 50325504 = 5/2*25161728.
|
|
MATHEMATICA
|
Do[If[DivisorSigma[1, n]+EulerPhi[n]==5/2*n, Print[n]], {n, 200000000}]
|
|
PROG
|
(PARI) isok(n) = eulerphi(n) + sigma(n) == 5*n/2; \\ Michel Marcus, Jul 14 2015
|
|
CROSSREFS
|
Cf. A002235.
Sequence in context: A250113 A182226 A066240 * A303686 A185099 A216295
Adjacent sequences: A115744 A115745 A115746 * A115748 A115749 A115750
|
|
KEYWORD
|
more,nonn
|
|
AUTHOR
|
Farideh Firoozbakht, Feb 12 2006
|
|
EXTENSIONS
|
a(10)-a(12) from Donovan Johnson, Feb 29 2012
a(13) from Donovan Johnson, Apr 04 2012
a(14) from Giovanni Resta, Jul 13 2015
|
|
STATUS
|
approved
|
|
|
|