The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A115747 Numbers n such that phi(n) + sigma(n) = 5/2*n. 1
 18, 20, 88, 368, 1504, 24448, 98048, 5238976, 25161728, 2730992944, 33995232256, 412316336128, 1391737114624, 7732492570624 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS If p = 3*2^(m-1)-1 is an odd prime then 2^m*p is in the sequence because phi(2^m*p) = 2^(m-1)*(3*2^(m-1)-2), sigma(2^m*p) = (2^(m+1)-1)*(3*2^(m-1)) so phi(2^m*p)+sigma(2^m*p) = 2^(m-1)*(3* 2^(m-1)-2)+(2^(m+1)-1)*(3*2^(m-1)) = 3*2^(2m-2)-2^m+3*2^(2m)-3*2^ (m-1) = 2^(m-1)*(3*2^(m-1)-2+3*2^(m+1)-3) = 2^(m-1)*(3*5*2^(m-1)-5) = 5/2*2^m*(3*2^(m-1)-1) = 5/2*(2^m*p). Except 18 & 5238976 all known terms of the sequence are of the form 2^m*(3*2^(m-1)-1), where (3*2^(m-1)-1) is prime. a(15) > 10^13. - Giovanni Resta, Jul 13 2015 LINKS EXAMPLE 25161728 is in the sequence because phi(25161728) + sigma(25161728) = 12578816 + 50325504 = 5/2*25161728. MATHEMATICA Do[If[DivisorSigma[1, n]+EulerPhi[n]==5/2*n, Print[n]], {n, 200000000}] PROG (PARI) isok(n) = eulerphi(n) + sigma(n) == 5*n/2; \\ Michel Marcus, Jul 14 2015 CROSSREFS Cf. A002235. Sequence in context: A250113 A182226 A066240 * A303686 A185099 A216295 Adjacent sequences:  A115744 A115745 A115746 * A115748 A115749 A115750 KEYWORD more,nonn AUTHOR Farideh Firoozbakht, Feb 12 2006 EXTENSIONS a(10)-a(12) from Donovan Johnson, Feb 29 2012 a(13) from Donovan Johnson, Apr 04 2012 a(14) from Giovanni Resta, Jul 13 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 11 06:08 EDT 2022. Contains 356046 sequences. (Running on oeis4.)