Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Mar 29 2020 18:33:18
%S 1,1,3,1,3,1,11,1,3,1,11,1,3,1,43,1,3,1,11,1,3,1,43,1,3,1,11,1,3,1,
%T 171,1,3,1,11,1,3,1,43,1,3,1,11,1,3,1,171,1,3,1,11,1,3,1,43,1,3,1,11,
%U 1,3,1,683,1,3,1,11,1,3,1,43,1,3,1,11,1,3,1,171,1,3,1,11,1,3,1,43,1,3,1,11,1
%N A divide-and-conquer sequence.
%H Alois P. Heinz, <a href="/A115716/b115716.txt">Table of n, a(n) for n = 0..16381</a>
%H R. Stephan, <a href="https://arxiv.org/abs/math/0307027">Divide-and-conquer generating functions. I. Elementary sequences </a>, arXiv:math/0307027 [math.CO], 2003.
%F The g.f. G(x) satisfies G(x)-4*x^2*G(x^2)=(1+2*x)/(1+x). - Argument and offset corrected by _Bill Gosper_, Sep 07 2016
%F G.f.: 1/(1-x) + Sum_{k>=0} ((4^k-0^k)/2) *x^(2^(k+1)-2) /(1-x^(2^k)). - corrected by _R. J. Mathar_, Sep 07 2016
%F a(n)=A007583(A091090(n+1)-1). - Adapted to new offset by _R. J. Mathar_, Sep 07 2016
%F a(0) = 1, a(2*n + 1) = 1 for n>=0. a(2*n + 2) = 4*a(n) - 1 for n>=0. - _Michael Somos_, Sep 07 2016
%e G.f. = 1 + x + 3*x^2 + x^3 + 3*x^4 + x^5 + 11*x^6 + x^7 + 3*x^8 + x^9 + ...
%p a:= proc(n) option remember; `if`(n=0, 1,
%p `if`(n::odd, 1, 4*a(n/2-1)-1))
%p end:
%p seq(a(n), n=0..100); # _Alois P. Heinz_, Sep 07 2016
%t a[n_] := a[n] = If[n == 0, 1, If[OddQ[n], 1, 4*a[n/2-1]-1]]; Table[a[n], {n, 0, 100}] (* _Jean-François Alcover_, Jan 25 2017, after _Alois P. Heinz_ *)
%o (PARI) {a(n) = if( n<1, n==0, n%2, 1, 4 * a(n/2-1) - 1)}; /* _Michael Somos_, Sep 07 2016 */
%Y Partial sums are A032925.
%Y Row sums of number triangle A115717.
%Y Bisection: A276390.
%Y Cf. A007583, A081294, A091090.
%Y See A276391 for a closely related sequence.
%K easy,nonn
%O 0,3
%A _Paul Barry_, Jan 29 2006