Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Dec 06 2024 17:59:52
%S 1,0,-3,0,-3,0,-3,0,-3,0,-3,0,-3,0,-3,0,-3,0,-3,0,-3,0,-3,0,-3,0,-3,0,
%T -3,0,-3,0,-3,0,-3,0,-3,0,-3,0,-3,0,-3,0,-3,0,-3,0,-3,0,-3,0,-3,0,-3,
%U 0,-3,0,-3,0
%N Expansion of (1-4*x^2)/(1-x^2).
%C Row sums of number triangle A115633.
%H G. C. Greubel, <a href="/A115634/b115634.txt">Table of n, a(n) for n = 0..5000</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (0,1).
%F a(n) = 4*0^n - 3*(1 + (-1)^n)/2.
%F a(n) = Sum_{k=0..n} A115633(n, k).
%F From _G. C. Greubel_, Nov 23 2021: (Start)
%F a(n) = 1 if n = 0, otherwise a(n) = -A010674(n-1).
%F E.g.f.: 4 - 3*cosh(x). (End)
%t Join[{1}, -3*Mod[Range[100] -1, 2]] (* _G. C. Greubel_, Nov 23 2021 *)
%t CoefficientList[Series[(1-4x^2)/(1-x^2),{x,0,100}],x] (* or *) LinearRecurrence[{0,1},{1,0,-3},100] (* or *) PadRight[{1},100,{-3,0}] (* _Harvey P. Dale_, Dec 06 2024 *)
%o (Magma) [4*0^n -3*(1+(-1)^n)/2: n in [0..100]]; // _G. C. Greubel_, Nov 23 2021
%o (Sage) [1]+[-3*((n-1)%2) for n in (1..100)] # _G. C. Greubel_, Nov 23 2021
%Y Cf. A010674, A115633.
%K easy,sign
%O 0,3
%A _Paul Barry_, Jan 27 2006