Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Jul 23 2017 16:56:39
%S 1,0,1,1,4,13,59,308,1871,12879,99144,843735,7865177,79698760,
%T 872235089,10253148625,128839087676,1723418002261,24450430660739,
%U 366702601116524,5796979684239647,96339860422218143,1679159568980521104,30628034488033962287
%N a(n) = number of reverse alternating fixed-point-free involutions w on 1,2,...,2n, i.e., w(1) < w(2) > w(3) < w(4) > ... < w(2n), w^2=1 and w(i) != i for all i.
%H Alois P. Heinz, <a href="/A115455/b115455.txt">Table of n, a(n) for n = 0..200</a>
%H R. P. Stanley, <a href="http://www.ams.org/amsmtgs/colloq-10.pdf">Permutations</a>, Joint Mathematics Meeting, 2009.
%H R. P. Stanley, <a href="http://dx.doi.org/10.1016/j.jcta.2006.06.008">Alternating permutations and symmetric functions</a>, J. Comb. Theory A 114 (3) (2007) 436-460
%F G.f.: (1-x^2)^{-1/4} (1+x)^{-1/2} Sum_{k>=0} E_{2k} v^k/k!, where E_{2k} is an Euler number and v = (1/4)*log((1+x)/(1-x)).
%e a(3)=1 because there is one reverse alternating fixed-point-free involution on 1,...,6, viz., 351624.
%t Table[SeriesCoefficient[(1-x^2)^(-1/4)*(1+x)^(-1/2)*Sum[(-1)^k*EulerE[2*k]*(1/4*Log[(1+x)/(1-x)])^k/k!,{k,0,n}],{x,0,n}],{n,0,20}] (* _Vaclav Kotesovec_, Apr 29 2014 *)
%Y Cf. A000085, A000111, A001147, A007779.
%K easy,nonn
%O 0,5
%A _Richard Stanley_, Jan 22 2006