Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Feb 20 2024 20:16:10
%S 7874,8119,69476962,98010199,108746354942,449212110367,544978035127,
%T 870501316279,998001001999,1428394731903223,1499870932756487,
%U 1806498025502498,1830668275445687,1911470478658759,2255786189655202
%N Numbers k such that the concatenation of k with k+2 gives a square.
%C Numbers k such that k concatenated with k+1 gives the product of two numbers which differ by 2.
%C Numbers k such that k concatenated with k-2 gives the product of two numbers which differ by 4.
%C Numbers k such that k concatenated with k-7 gives the product of two numbers which differ by 6.
%H Chai Wah Wu, <a href="/A115426/b115426.txt">Table of n, a(n) for n = 1..1000</a>
%e 8119//8121 = 9011^2, where // denotes concatenation.
%e 98010199//98010200 = 99000100 * 99000102.
%e 98010199//98010197 = 99000099 * 99000103.
%o (Python)
%o from itertools import count, islice
%o from sympy import sqrt_mod
%o def A115426_gen(): # generator of terms
%o for j in count(0):
%o b = 10**j
%o a = b*10+1
%o for k in sorted(sqrt_mod(2,a,all_roots=True)):
%o if a*(b-2) <= k**2-2 < a*(a-3):
%o yield (k**2-2)//a
%o A115426_list = list(islice(A115426_gen(),40)) # _Chai Wah Wu_, Feb 20 2024
%Y Cf. A030465, A102567, A115427, A115428, A115429, A115430, A115431, A115432, A115433, A115434, A115435, A115436, A115437.
%Y Cf. A116106, A116110, A116112, A116125, A116242.
%Y Cf. A116136, A116143, A116107, A116275, A116163, A116099, A116177, A116295.
%K base,nonn
%O 1,1
%A _Giovanni Resta_, Jan 24 2006
%E Edited by _N. J. A. Sloane_, Apr 13 2007