login
Decimal expansion of first zero of BesselJ(2,z).
5

%I #18 Aug 06 2022 22:03:16

%S 5,1,3,5,6,2,2,3,0,1,8,4,0,6,8,2,5,5,6,3,0,1,4,0,1,6,9,0,1,3,7,7,6,5,

%T 4,5,6,9,7,3,7,7,2,3,4,7,5,0,0,5,5,0,9,4,3,3,5,8,2,5,7,2,5,7,4,5,9,9,

%U 8,1,9,6,6,1,0,7,9,2,8,4,8,7,9,4,2,3,6,8,1,9,7,2,8,7,4,5,0,4,6,2,8,7,8,3,2

%N Decimal expansion of first zero of BesselJ(2,z).

%C Also the first root of the sinc(4,x) function, that is, the radial component of the 4D Fourier transform of 4-dimensional unit sphere. Also, the solution of 2J_1(x) = x*J_0(x). - _Stanislav Sykora_, Nov 14 2013

%H Stanislav Sykora, <a href="http://dx.doi.org/10.3247/SL2Math07.002">K-Space Images of n-Dimensional Spheres and Generalized Sinc Functions</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BesselFunctionZeros.html">Bessel Function Zeros</a>.

%e 5.1356223018406825563...

%t RealDigits[BesselJZero[2, 1], 10, 100][[1]] (* _Amiram Eldar_, May 18 2021 *)

%o (PARI) solve(x=5,6,besselj(2,x)) \\ _Charles R Greathouse IV_, Feb 19 2014

%o (PARI) besseljzero(2) \\ _Charles R Greathouse IV_, Aug 06 2022

%Y Cf. A115368, A115369, A115371, A115372, A115373.

%K nonn,cons

%O 1,1

%A _Eric W. Weisstein_, Jan 21 2006