OFFSET
0,2
COMMENTS
Row sums are (n+1)^2 (A000290(n+1)). Diagonal sums are the Molien series A007980. T(2n,n) is 4n+1 (A016813), the partial sums of (2-0^n)^2. T(2,n)-T(2n,n+1) is 3-2*0^n.
From Mats Granvik, Jul 06 2010: (Start)
If seen as a square array:
1, 2, 2, 2
2, 5, 6, 6
2, 6, 9, 10
2, 6, 10, 13
then the matrix inverse contains the same values, only signed and in reversed order:
13, -10, 6, -2
-10, 9, -6, 2
6, -6, 5, -2
-2, 2, -2, 1
(End)
FORMULA
G.f.: (1+x)(1+x*y)/((1-x)(1-x*y)(1-x^2*y)).
T(n, k) = sum{j=0..n, [j<=k]*(2-0^(k-j))*[j<=n-k]*(2-0^(n-k-j))}.
EXAMPLE
Triangle begins
1;
2,2;
2,5,2;
2,6,6,2;
2,6,9,6,2;
2,6,10,10,6,2;
MATHEMATICA
Flatten[Table[Table[If[n - k + 1 == k, 4*(n - k + 1 - 1) + 1, If[n - k + 1 > k, 4*(k - 1) + 2, 4*(n - k + 1 - 1) + 2]], {k, 1, n}], {n, 1, 11}]] (* Mats Granvik, Jan 06 2016 *)
CROSSREFS
KEYWORD
AUTHOR
Paul Barry, Jan 19 2006
EXTENSIONS
a(65)-a(66) from Mats Granvik, Jan 06 2016
STATUS
approved