Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Jan 20 2016 08:22:14
%S 1,1,2,5,14,47,173,702,3124,14901,76405,417210,2411466,14731095,
%T 94573911,636575050,4480990936,32887804361,251236573561,1993395483746,
%U 16397468177406,139634290253907,1229013163330947,11166172488138322,104593176077399652
%N Number of partitions of {1,...,n} into block sizes not a multiple of 4.
%H Alois P. Heinz, <a href="/A115276/b115276.txt">Table of n, a(n) for n = 0..500</a>
%F E.g.f.: exp(sinh(x)+(cosh(x)-cos(x))/2).
%p a:= proc(n) option remember; `if`(n=0, 1, add(`if`(
%p irem(j, 4)=0, 0, binomial(n-1, j-1)*a(n-j)), j=1..n))
%p end:
%p seq(a(n), n=0..30); # _Alois P. Heinz_, Mar 17 2015
%t a[n_] := a[n] = If[n == 0, 1, Sum[If[Mod[j, 4] == 0, 0, Binomial[n - 1, j - 1]*a[n - j]], {j, 1, n}]]; Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Jan 20 2016, after _Alois P. Heinz_ *)
%Y Cf. A001935, A003724, A115275, A115277.
%K nonn
%O 0,3
%A _Christian G. Bower_, Jan 18 2006