login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A115269
Row sums of correlation triangle for floor((n+4)/4).
4
1, 2, 4, 6, 11, 16, 24, 32, 46, 60, 80, 100, 130, 160, 200, 240, 295, 350, 420, 490, 581, 672, 784, 896, 1036, 1176, 1344, 1512, 1716, 1920, 2160, 2400, 2685, 2970, 3300, 3630, 4015, 4400, 4840, 5280, 5786, 6292, 6864, 7436, 8086, 8736, 9464, 10192, 11011, 11830
OFFSET
0,2
COMMENTS
Row sums of number triangle A115268.
LINKS
Hamzeh Mujahed, Benedek Nagy, Hyper-Wiener Index on Rows of Unit Cells of the BCC Grid, Comptes rendus de l’Académie bulgare des Sciences, Tome 71, No 5, 2018, 675-684. See p. 8.
Index entries for linear recurrences with constant coefficients, signature (2,0,-2,3,-4,0,4,-3,2,0,-2,1).
FORMULA
G.f.: (1+x+x^2+x^3)^2/((1-x^4)^4*(1-x^2));
a(n) = Sum_{k=0..n} Sum_{j=0..n} [j<=k]*floor((k-j+4)/4)*[j<=n-k]*floor((n-k-j+4)/4).
a(n) = 2*a(n-1) -2*a(n-3) +3*a(n-4) -4*a(n-5) +4*a(n-7) -3*a(n-8) +2*a(n-9) -2*a(n-11) +a(n-12).
G.f.: -1 / ( (x^2+1)^2*(1+x)^3*(x-1)^5 ). - R. J. Mathar, Nov 28 2014
a(n) = (2*(n^4+24*n^3+197*n^2+636*n)+3*(431+(2*n^2+24*n+65)*(-1)^n)+24*((n+7)*(-1)^((2*n-1+(-1)^n)/4)-(n+5)*(-1)^((6*n-1+(-1)^n)/4)))/1536. - Luce ETIENNE, Mar 03 2015
MATHEMATICA
CoefficientList[Series[(1+x+x^2+x^3)^2/((1-x^4)^4(1-x^2)), {x, 0, 50}], x] (* Harvey P. Dale, Aug 20 2011 *)
PROG
(PARI) a(n) = sum(k=0, n, sum(j=0, n, (j<=k)*((k-j+4)\4)*(j<=n-k)*((n-k-j+4)\4))); \\ Michel Marcus, Apr 09 2015
CROSSREFS
Sequence in context: A072951 A325591 A062766 * A103692 A114921 A103442
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jan 18 2006
EXTENSIONS
More terms from Michel Marcus, Apr 09 2015
STATUS
approved