login
A115260
Prime numbers in the sequence of the absolute difference of the sum of digits in odd positions and the sum of digits in even positions of prime numbers.
2
2, 3, 5, 7, 2, 7, 2, 3, 3, 2, 5, 2, 5, 2, 2, 3, 5, 7, 3, 3, 2, 2, 3, 3, 7, 5, 2, 3, 7, 2, 2, 5, 2, 5, 3, 3, 5, 7, 7, 5, 2, 5, 13, 3, 2, 3, 5, 3, 2, 7, 2, 5, 5, 7, 13, 3, 5, 2, 2, 7, 13, 3, 2, 3, 5, 17, 7, 13, 5, 3, 7, 17, 13, 7, 3, 7, 7, 2, 3, 5, 5, 2, 2, 7, 3, 3, 7, 2, 3, 7, 2, 3, 7, 2, 5, 5, 3, 2, 7, 3, 5, 7
OFFSET
1,1
COMMENTS
Primes in the sequence A115259.
EXAMPLE
a(37) = 3 because 37th prime = 157, (7+1) - 5 = 3, 3 is prime.
MAPLE
select(isprime, [seq(abs(sum(convert(ithprime(a), base, 10)[2*i], i=1..nops(convert (ithprime(a), base, 10))/2)-sum(convert(ithprime(a), base, 10)[2*i+1], i=0..(nops (convert(ithprime(a), base, 10))-1)/2)), a=1..N)]);
KEYWORD
base,nonn
AUTHOR
STATUS
approved