login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A115164
a(n) = 3*a(n-1) + 4*a(n-2), with a(0) = 3, a(1) = 7, a(3) = 9, for n > 2.
3
3, 7, 9, 55, 201, 823, 3273, 13111, 52425, 209719, 838857, 3355447, 13421769, 53687095, 214748361, 858993463, 3435973833, 13743895351, 54975581385, 219902325559, 879609302217, 3518437208887, 14073748835529, 56294995342135
OFFSET
0,1
FORMULA
From Colin Barker, Oct 31 2012: (Start)
a(n) = (4^(1 + n) - 19*(-1)^n)/5 for n > 0.
a(n) = 3*a(n-1) + 4*a(n-2) for n > 2.
G.f.: (24*x^2 + 2*x - 3)/((x + 1)*(4*x - 1)). (End)
From Franck Maminirina Ramaharo, Nov 23 2018: (Start)
a(n) = A115113(n) + A165326(n).
E.g.f.: (30 - 19*exp(-x) + 4*exp(4*x))/5. (End)
MATHEMATICA
Join[{3}, LinearRecurrence[{3, 4}, {7, 9}, 50]]
PROG
(Maxima) (a[0] : 3, a[1] : 7, a[2] : 9, a[n] := 3*a[n-1] + 4*a[n-2], makelist(a[n], n, 0, 50)); /* Franck Maminirina Ramaharo, Nov 23 2018 */
(PARI) vector(50, n, n--; if(n==0, 3, (4^(1+n) -19*(-1)^n)/5)) \\ G. C. Greubel, Nov 23 2018
(Magma) [3] cat [(4^(1+n) -19*(-1)^n)/5: n in [1..50]]; // G. C. Greubel, Nov 23 2018
(Sage) [3] + [(4^(1+n) -19*(-1)^n)/5 for n in (1..50)] # G. C. Greubel, Nov 23 2018
CROSSREFS
Sequence in context: A033681 A074339 A355732 * A088801 A003033 A193945
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Mar 06 2006
EXTENSIONS
Edited, and new name from Franck Maminirina Ramaharo, Nov 23 2018, after Colin Barker
STATUS
approved