login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Third convolution of A115140.
6

%I #26 Sep 08 2022 08:45:23

%S 1,-3,0,-1,-3,-9,-28,-90,-297,-1001,-3432,-11934,-41990,-149226,

%T -534888,-1931540,-7020405,-25662825,-94287120,-347993910,-1289624490,

%U -4796857230,-17902146600,-67016296620,-251577050010,-946844533674,-3572042254128,-13505406670700

%N Third convolution of A115140.

%H Seiichi Manyama, <a href="/A115142/b115142.txt">Table of n, a(n) for n = 0..1668</a>

%F O.g.f.: 1/c(x)^3 = P(4, x) - x*P(3, x)*c(x) with the o.g.f. c(x):=(1-sqrt(1-4*x))/(2*x) of A000108 (Catalan numbers) and the polynomials P(n, x) defined in A115139. Here P(4, x)=1-2*x and P(3, x)=1-x.

%F a(n) = -C3(n-3), n >= 3, with C3(n):= A000245(n+1) (third convolution of Catalan numbers). a(0)=1, a(1)=-3, a(2)=0. [1, -3] is the row n=3 of signed A034807 (signed Lucas polynomials). See A115149 and A034807 for comments.

%F D-finite with recurrence +n*(n-3)*a(n) -2*(n-2)*(2*n-5)*a(n-1)=0. - _R. J. Mathar_, Sep 23 2021

%F O.g.f.: (1/8)*(1 + sqrt(1 - 4*x))^3 = ( hypergeom([-1/4, -3/4], [-1/2], 4*x) )^2. - _Peter Bala_, Mar 04 2022

%t CoefficientList[Series[(2*(1-2*x)-(1-x)*(1-Sqrt[1-4*x]))/2, {x, 0, 30}], x] (* _G. C. Greubel_, Feb 12 2019 *)

%o (PARI) my(x='x+O('x^30)); Vec((2*(1-2*x)-(1-x)*(1-sqrt(1-4*x)))/2) \\ _G. C. Greubel_, Feb 12 2019

%o (Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (2*(1-2*x)-(1-x)*(1-Sqrt(1-4*x)))/2 )); // _G. C. Greubel_, Feb 12 2019

%o (Sage) ((2*(1-2*x)-(1-x)*(1-sqrt(1-4*x)))/2).series(x, 30).coefficients(x, sparse=False) # _G. C. Greubel_, Feb 12 2019

%Y Cf. A000108, A000245, A071724.

%Y Cf. A115139, A115140, A115141, A115143 - A115149.

%K sign,easy

%O 0,2

%A _Wolfdieter Lang_, Jan 13 2006