login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Second diagonal of triangle A113647 (called Y(2,1)).
3

%I #10 May 22 2013 05:47:18

%S 1,1,7,41,247,1545,9975,66057,446455,3067913,21372919,150618121,

%T 1071841271,7691763721,55600938999,404488323081,2959189475319,

%U 21757613309961,160691417776119,1191577871450121,8868160862158839

%N Second diagonal of triangle A113647 (called Y(2,1)).

%H Vincenzo Librandi, <a href="/A115137/b115137.txt">Table of n, a(n) for n = 0..300</a>

%F a(n)= b(n) - 2*b(n-1) with b(n):=A062992(n)= A064062(n+1), n>=1. a(0):=1.

%F G.f.: (1-2*x)*(2*c(2*x)-1)/(1+x) with c(x) g.f. of A000108 (Catalan).

%F a(n)= A113647(n, n), n>=1.

%F Recurrence: (n-2)*(n+1)*a(n) = (7*n^2-19*n+14)*a(n-1) + 4*(n-1)*(2*n-3)*a(n-2). - _Vaclav Kotesovec_, Oct 19 2012

%F a(n) ~ 2^(3*n+2)/(3*sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Oct 19 2012

%e 41=a(3)= A062992(3) - 2*A062992(2) = 67 - 2*13.

%t CoefficientList[Series[(1-2*x)*(2*(1-Sqrt[1-8*x])/(4*x)-1)/(1+x), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Oct 19 2012 *)

%K nonn,easy

%O 0,3

%A _Wolfdieter Lang_, Jan 13 2006