Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Oct 27 2024 04:48:16
%S 2,3,6,11,26,63,158,411,1098,2955,8054,22151,61322,170823,478318,
%T 1345211,3798242,10761723,30585830,87169619,249056138,713205903,
%U 2046590846,5883948951,16945772210,48882035163,141214768974
%N Asymmetric rhythm cycles (patterns): binary necklaces of length 2n subject to the restriction that for any k if the k-th bead is of color 1 then the (k+n)-th bead (modulo 2n) is of color 0.
%H R. W. Hall and P. Klingsberg, <a href="https://archive.bridgesmathart.org/2004/bridges2004-189.html">Asymmetric Rhythms, Tiling Canons and Burnside's Lemma</a>, Bridges Proceedings, pp. 189-194, 2004 (Winfield, Kansas).
%H R. W. Hall and P. Klingsberg, <a href="https://doi.org/10.1080/00029890.2006.11920376">Asymmetric Rhythms and Tiling Canons</a>, Preprint, 2004; The American Mathematical Monthly, Volume 113, 2006 - Issue 10, [<a href="https://www.jstor.org/stable/27642087">alternative link</a>].
%F a(n) = (Sum_{d|n}phi(2d)+Sum_{d|n, d odd}phi(d)3^(n/d))/(2n), where phi(n) is the Euler function A000010.
%F a(n) ~ 3^n/(2*n). - _Vaclav Kotesovec_, Oct 27 2024
%e For n=3, the 27=3^3 admissible words are separated into 6 shift-equivalence classes (necklaces) containing, resp., the words 000000, 100000, 110000, 101000, 111000 and 101010. Thus a(3)=6.
%t a[n_] := Sum[EulerPhi[2d] + Boole[OddQ[d]] EulerPhi[d] 3^(n/d), {d, Divisors[n]}]/(2n);
%t Array[a, 27] (* _Jean-François Alcover_, Aug 29 2019 *)
%Y Cf. A000016, A006575.
%K easy,nonn
%O 1,1
%A _Valery A. Liskovets_, Jan 17 2006