login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of (2n+1)-almost primes less than or equal to (n-th n-almost prime) * ((n+1)-th (n+1)-almostprime).
1

%I #15 Sep 02 2024 13:04:32

%S 2,5,11,17,25,30,45,67,74,82,95,111,141,177,193,208,211,223,257,277,

%T 288,353,431,453,481,509,528,540,563,619,672,700,725,745,804,857,905,

%U 1003,1077,1127,1199,1268,1281,1321,1354,1379,1423,1517,1607,1660,1714,1748

%N Number of (2n+1)-almost primes less than or equal to (n-th n-almost prime) * ((n+1)-th (n+1)-almostprime).

%C Numbers k such that Pi(2n-1, (n-th n-almost prime) * ((n+1)-th (n+1)-almostprime)) = Pi(2n-1, A101695(n)*A101695(n+1)) = (2n-1)-AlmostPrime(k).

%H Robert G. Wilson v, <a href="/A115057/b115057.txt">Table of n, a(n) for n = 1..228</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/AlmostPrime.html">Almost Prime</a>.

%t AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[ PrimePi[n / Times @@ Prime[ Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]] (* _Eric W. Weisstein_, Feb 07 2006 *);

%t lst={ (* the list of entries in A101695 *) }; lsu = {}; Do[a = AlmostPrimePi[2 n + 1, lst[[n]]*lst[[n + 1]]]; AppendTo[lsu, a]; Print[{n, a}], {n, 228}] (* _Robert G. Wilson v_, Oct 08 2007 *)

%Y Cf. A101695.

%K nonn,less

%O 1,1

%A _Jonathan Vos Post_, Oct 08 2007