login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A115011
Array read by antidiagonals: let V(m,n) = Sum_{i=1..m, j=1..n, gcd(i,j)=1} (m+1-i)*(n+1-j), then T(m,n) = 2*(2*m*n+m+n+2*V(m,n)), for m >= 0, n >= 0.
1
0, 2, 2, 4, 12, 4, 6, 26, 26, 6, 8, 44, 56, 44, 8, 10, 66, 98, 98, 66, 10, 12, 92, 148, 172, 148, 92, 12, 14, 122, 210, 262, 262, 210, 122, 14, 16, 156, 280, 376, 400, 376, 280, 156, 16, 18, 194, 362, 502, 578, 578, 502, 362, 194, 18, 20, 236, 452, 652, 772, 836, 772, 652, 452, 236, 20
OFFSET
0,2
LINKS
Max A. Alekseyev. On the number of two-dimensional threshold functions. SIAM J. Disc. Math. 24(4), 2010, pp. 1617-1631. doi:10.1137/090750184
MATHEMATICA
V[m_, n_] := Sum[If[GCD[i, j] == 1, (m-i+1)(n-j+1), 0], {i, m}, {j, n}];
T[m_, n_] := 2(2m n + m + n + 2 V[m, n]);
Table[T[m-n, n], {m, 0, 10}, {n, 0, m}] // Flatten (* Jean-François Alcover, Oct 08 2018 *)
CROSSREFS
Twice A115009, which see for further information.
Sequence in context: A298778 A260878 A064880 * A296688 A219569 A202795
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Feb 24 2006
STATUS
approved