login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A114984
Coefficients of cubic equations in the form w^2=4*x^3-g2*x-g3 Weierstrass elliptic form whose solutions approximate zeta zeros.
0
200, 199, 442, 441, 684, 683, 926, 925, 1168, 1167, 1410, 1409, 1652, 1651, 1894, 1893, 2136, 2135, 2378, 2377, 2620, 2619, 2862, 2861, 3104, 3103, 3346, 3345, 3588, 3587, 3830, 3829, 4072, 4071, 4314, 4313, 4556, 4555, 4798, 4797, 5040, 5039, 5282
OFFSET
0,1
COMMENTS
Other good approximation functions are: 1/2+I*b[n]->1/2-I/LogIntegral[1/(2.85*n)] 1/2+I*b[n]->1/2-I/LogIntegral[1/(4.05*Sqrt[n])] These types of functions gives the root finding function in Mathematica a place to start in iterations.
FORMULA
f[n = 200 + 242*(n - 1); g2/4=(1-f[n]);g3/4=f[n]; (a(n),a)(n+1) = {g3/4,g2/4}.
a(n) = (139+61*(-1)^n+121*n). a(n) = a(n-1)+a(n-2)-a(n-3). G.f.: (43*x^2-x+200) / ((x-1)^2*(x+1)). [Colin Barker, Dec 26 2012]
EXAMPLE
f[n_] = 200 + 242*(n - 1);
b = Table[Table[x /. NSolve[x^3 - (1 - f[n])*x + f[n] == 0, x][[m]], {m, 1, 3}], {n, 1, 25}]
gives roots like:
{-1., 0.5 - 14.1333*I, 0.5+ 14.1333*I},
{-1., 0.5 - 21.0178*I, 0.5 + 21.0178*I}
MATHEMATICA
f[n_] = 200 + 242*(n - 1); a = Flatten[Table[Abs[Coefficient[x^3 - (1 - f[n])*x + f[n], x, m]], {n, 1, 50}, {m, 0, 1}]]
LinearRecurrence[{1, 1, -1}, {200, 199, 442}, 50] (* Harvey P. Dale, Jun 29 2015 *)
CROSSREFS
Sequence in context: A035881 A239525 A180104 * A192545 A118118 A124472
KEYWORD
nonn,uned,easy
AUTHOR
Roger L. Bagula, Feb 22 2006
STATUS
approved