Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #80 Sep 27 2023 06:07:15
%S 1,0,2,30,864,39480,2631600,241133760,29083420800,4467125013120,
%T 851371260364800,197158144895712000,54528028997584665600,
%U 17752366094818747392000,6720318485119046923315200,2927066537906697348594432000,1453437879238150456164433920000
%N Number of permutations of the multiset {1,1,2,2,...,n,n} with no two consecutive terms equal.
%C a(n) is also the number of (0,1)-matrices A=(a_ij) of size n X 2n such that each row has exactly two 1's and each column has exactly one 1 and with the restriction that no 1 stands on the line from a_11 to a_22. - _Shanzhen Gao_, Feb 24 2010
%C a(n) is the number of permutations of the multiset {1,1,2,2,...,n,n} with no fixed points. - _Alexander Burstein_, May 16 2020
%C Also the number of 2-uniform ordered set partitions of {1...2n} containing no two successive vertices in the same block. - _Gus Wiseman_, Jul 04 2020
%D R. P. Stanley, Enumerative Combinatorics Volume I, Cambridge University Press, 1997. Chapter 2, Sieve Methods, Example 2.2.3, page 68.
%H Seiichi Manyama, <a href="/A114938/b114938.txt">Table of n, a(n) for n = 0..238</a> (terms 1..100 from Andrew Woods)
%H H. Eriksson and A. Martin, <a href="https://arxiv.org/abs/1702.04177">Enumeration of Carlitz multipermutations</a>, arXiv:1702.04177 [math.CO], 2017.
%F a(n) = Sum_{k=0..n} ((binomial(n, k)*(-1)^(n-k)*(n+k)!)/2^k).
%F a(n) = (-1)^n * n! * A000806(n), n>0. - _Vladeta Jovovic_, Nov 19 2009
%F a(n) = n*(2*n-1)*a(n-1) + (n-1)*n*a(n-2). - _Vaclav Kotesovec_, Aug 07 2013
%F a(n) ~ 2^(n+1)*n^(2*n)*sqrt(Pi*n)/exp(2*n+1). - _Vaclav Kotesovec_, Aug 07 2013
%F a(n) = n! * A278990(n). - _Alexander Burstein_, May 16 2020
%F From _G. C. Greubel_, Sep 26 2023: (Start)
%F a(n) = (-1)^n * (i/e)*sqrt(2/Pi) * n! * BesselK(n+1/2, -1).
%F a(n) = [n! * (1/x) * p_{n+1}(x)]|_{x= -1} (See A104548 for p_{n}(x)).
%F E.g.f.: sqrt(Pi/(2*x)) * exp(-(1+x)^2/(2*x)) * erfi((1+x)/sqrt(2*x)).
%F Sum_{n >= 0} a(n)*x^n/(n!)^2 = exp(sqrt(1-2*x))/sqrt(1-2*x).
%F Sum_{n >= 0} a(n)*x^n/(n!*(n+1)!) = ( 1 - exp(-1 + sqrt(1-2*x)) )/x. (End)
%e a(2) = 2 because there are two permutations of {1,1,2,2} avoiding equal consecutive terms: 1212 and 2121.
%t Table[Sum[Binomial[n,i](2n-i)!/2^(n-i) (-1)^i,{i,0,n}],{n,0,20}] (* _Geoffrey Critzer_, Jan 02 2013, and adapted to the extension by _Stefano Spezia_, Nov 15 2018 *)
%t Table[Length[Select[Permutations[Join[Range[n],Range[n]]],!MatchQ[#,{___,x_,x_,___}]&]],{n,0,5}] (* _Gus Wiseman_, Jul 04 2020 *)
%o (PARI) A114938(n)=sum(k=0, n, binomial(n, k)*(-1)^(n-k)*(n+k)!/2^k);
%o vector(20, n, A114938(n-1)) \\ _Michel Marcus_, Aug 10 2015
%o (Magma) [1] cat [n le 2 select 2*(n-1) else n*(2*n-1)*Self(n-1) + (n-1)*n*Self(n-2): n in [1..20]]; // _Vincenzo Librandi_, Aug 10 2015
%o (SageMath)
%o def A114938(n): return (-1)^n*sum(binomial(n,k)*factorial(n+k)//(-2)^k for k in range(n+1))
%o [A114938(n) for n in range(31)] # _G. C. Greubel_, Sep 26 2023
%Y Cf. A114939 = preferred seating arrangements of n couples.
%Y Cf. A007060 = arrangements of n couples with no adjacent spouses; A007060(n) = 2^n * A114938(n) (this sequence).
%Y Cf. A104548, A193638.
%Y Cf. A278990 = number of loopless linear chord diagrams with n chords.
%Y Cf. A000806 = Bessel polynomial y_n(-1).
%Y The version for multisets with prescribed multiplicities is A335125.
%Y The version for prime indices is A335452.
%Y Anti-run compositions are counted by A003242.
%Y Anti-run compositions are ranked by A333489.
%Y Inseparable partitions are counted by A325535.
%Y Inseparable partitions are ranked by A335448.
%Y Separable partitions are counted by A325534.
%Y Separable partitions are ranked by A335433.
%Y Cf. A007716, A128695, A292884, A335126, A335434, A335451.
%Y Other sequences involving the multiset {1,1,2,2,...,n,n}: A001147, A007717, A020555, A094574, A316972.
%Y Row n=2 of A322093.
%K nonn
%O 0,3
%A _Hugo Pfoertner_, Jan 08 2006
%E a(0)=1 prepended by _Seiichi Manyama_, Nov 15 2018