login
Primes p such that pi(p) is obtained by dropping one of the digits of p in decimal expansion.
4

%I #3 Mar 30 2012 17:37:43

%S 17,12491,14723,42437,57089,58193,61051,63131,63347,64553,64567,64577,

%T 64591,64601,64661,64679,64951,65071,65173,65293,65881,66863,69931,

%U 79817,99551,129083,165103,263071,284833,1407647,1515259,4303027

%N Primes p such that pi(p) is obtained by dropping one of the digits of p in decimal expansion.

%C If n>31 then we can get pi(a(n)) by dropping the first digit of a(n). Next term is greater than prime(20000000).

%e 95517973 is in the sequence because 95517973 is prime and pi(95517973)=5517973.

%t Do[h=IntegerDigits[Prime@n]; l=Length[h]; If[MemberQ[Table[ FromDigits[Drop[h, {k}]], {k, l}], n], Print[Prime@n]], {n, 20000000}]

%Y Cf. A114924.

%K fini,base,nonn

%O 1,1

%A _Farideh Firoozbakht_, Jan 14 2006