login
A114895
Increasing sequence of primes such that sum of any two neighbor terms is a prime power (power of prime).
0
2, 3, 5, 11, 53, 971, 15413, 50123, 4144181, 17175725003, 51543751733, 223334155211, 77371252455336043847040053, 5070525029660462269942965781451
OFFSET
1,1
COMMENTS
The next term has 117 digits:
157608024785577916849116160400574455220318957081861786671793173616982\
887085988842445651994494510002100956568995445813.
FORMULA
a(n)+a(n-1)=p^m, where p is prime; starting with n=3 p=2.
EXAMPLE
2+3=5^1, 5+11=2^4, 11+53=2^6, 53+971=2^10, 971+15413=2^14, 15413+50123=2^16, 50123+4144181=2^22, etc.
CROSSREFS
Sequence in context: A357305 A000905 A065296 * A083685 A243755 A242334
KEYWORD
more,nonn
AUTHOR
Zak Seidov, Jan 05 2006
STATUS
approved