OFFSET
1,10
COMMENTS
This sequence is an approximation of a quintuple factorial analog to Stirling's approximation to factorial. Note that a(n) is exact for n = 1, 5, 10.
EXAMPLE
a(10) = floor(10^2/10!!!!!) = floor(10^2/50) = floor(2) = 2.
a(15) = floor(15^3/15!!!!!) = floor((15^3)/750) = floor(4.5) = 4.
a(20) = floor(20^4/20!!!!!) = floor((20^4)/15000) = floor(10.6666667) = 10.
a(25) = floor(25^5/25!!!!!) = floor((25^5)/375000) = floor(26.0416667) = 26.
a(30) = floor(30^6/30!!!!!) = floor((30^6)/11250000) = floor(64.8) = 64.
a(35) = floor(35^7/35!!!!!) = floor((35^7)/393750000) = floor(163.401389) = 163.
MATHEMATICA
fac[n_Integer, m_Integer] := Block[{t = n, f = Max[1, n]}, While[t > m, t -= m; f *= t]; f]; a[n_] := Floor[n^(n/5)/fac[n, 5]]; Array[a, 65] (* Giovanni Resta, Jun 15 2016 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Feb 20 2006
EXTENSIONS
Corrected and extended by Giovanni Resta, Jun 15 2016
STATUS
approved