OFFSET
1,6
COMMENTS
This sequence is an approximation of a triple factorial analog to Stirling's approximation to factorial. Note that a(n) is exact for n = 1, 3, 6.
LINKS
Harvey P. Dale, Table of n, a(n) for n = 1..1000
EXAMPLE
a(9) = floor((9^3)/162) = floor(4.5) = 4.
a(10) = floor((10^3.33333)/280) = floor(7.69381906) = 7.
a(27) = floor((27^9)/7142567040) = floor(1067.62701) = 1067.
MATHEMATICA
fac[n_, m_] := Block[{t = n, f = Max[1, n]}, While[t > m, t -= m; f *= t]; f]; a[n_] := Floor[n^(n/3)/fac[n, 3]]; Array[a, 40] (* Giovanni Resta, Jun 15 2016 *)
Table[Floor[n^(n/3)/Times@@Range[n, 1, -3]], {n, 50}] (* Harvey P. Dale, Aug 06 2021 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Feb 20 2006
EXTENSIONS
More terms from Giovanni Resta, Jun 15 2016
STATUS
approved