login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A114863
a(n) = floor(n^(n/3)/n!!!).
1
1, 0, 1, 1, 1, 2, 3, 3, 4, 7, 7, 10, 18, 18, 26, 45, 44, 64, 113, 112, 163, 287, 285, 416, 733, 731, 1067, 1885, 1885, 2755, 4873, 4881, 7147, 12659, 12697, 18613, 33007, 33143, 48638, 86337, 86777, 127463, 226454, 227795, 334864, 595382, 599342, 881657
OFFSET
1,6
COMMENTS
This sequence is an approximation of a triple factorial analog to Stirling's approximation to factorial. Note that a(n) is exact for n = 1, 3, 6.
LINKS
FORMULA
a(n) = floor(n^(n/3)/n!!!). a(n) = floor((A000312(n)^(1/3))/A007661(n)).
EXAMPLE
a(9) = floor((9^3)/162) = floor(4.5) = 4.
a(10) = floor((10^3.33333)/280) = floor(7.69381906) = 7.
a(27) = floor((27^9)/7142567040) = floor(1067.62701) = 1067.
MATHEMATICA
fac[n_, m_] := Block[{t = n, f = Max[1, n]}, While[t > m, t -= m; f *= t]; f]; a[n_] := Floor[n^(n/3)/fac[n, 3]]; Array[a, 40] (* Giovanni Resta, Jun 15 2016 *)
Table[Floor[n^(n/3)/Times@@Range[n, 1, -3]], {n, 50}] (* Harvey P. Dale, Aug 06 2021 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Feb 20 2006
EXTENSIONS
More terms from Giovanni Resta, Jun 15 2016
STATUS
approved