Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Apr 11 2021 04:54:33
%S 9,10,14,15,40,43046761,43046763,44726379,44726404,44732965,44733590,
%T 44766358,432186847,432186848,432193409,432193652,432193656,432193683,
%U 432226451,432226515,432273171,432273172,432273208,432338744,432340931
%N Sum of first n digits of Pi to digit-wise power of first n digits of e.
%C The 331st digit of Pi and the 331st digit of e are both 0, so to generate any additional terms of the sequence beyond 330 terms one would have to define 0^0 to be either 0 or 1. - _Harvey P. Dale_, Aug 05 2014
%H Harvey P. Dale, <a href="/A114844/b114844.txt">Table of n, a(n) for n = 1..300</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PiDigits.html">Pi Digits</a>.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/e.html">e</a>.
%F a(n) = Sum_{i=1..n} A000796(i)^A001113(i).
%e Since Pi =
%e 3.1415926535897932384626433832795028841971693993751058209749445923078164062...
%e and e =
%e 2.71828182845904523536028747135266249775724709369995957496696762772407663...
%e we have:
%e a(1) = 9 = 3^2.
%e a(2) = 10 = 3^2 + 1^7.
%e a(3) = 14 = 3^2 + 1^7 + 4^1.
%e a(4) = 15 = 3^2 + 1^7 + 4^1 + 1^8.
%e a(5) = 40 = 3^2 + 1^7 + 4^1 + 1^8 + 5^2.
%e a(6) = 43046761 = 3^2 + 1^7 + 4^1 + 1^8 + 5^2 + 9^8.
%t With[{nn=30},Accumulate[RealDigits[Pi,10,nn][[1]]^RealDigits[E,10,nn] [[1]]]] (* _Harvey P. Dale_, Aug 05 2014 *)
%Y Cf. A000796, A001113, A039661, A059850, A114605.
%K base,easy,nonn
%O 1,1
%A _Jonathan Vos Post_, Feb 19 2006