login
A114716
Number of linear extensions of a 3 X 2 X n lattice.
4
1, 5, 2452, 4877756, 20071150430, 129586764260850, 1138355914222027660, 12513844842339741519760, 163186564770917385358723138, 2434438822161210367337209525489, 40488679486377745566571570522228550, 736610570835499716578578298705683198672
OFFSET
0,2
REFERENCES
Stanley, R., Enumerative Combinatorics, Vol. 2, Proposition 7.10.3 and Vol. 1, Sec 3.5 Chains in Distributive Lattices.
LINKS
MAPLE
b:= proc(u, v, w, x, y, z) option remember;
`if`({u, v, w, x, y, z}={0}, 1,
`if`(u>v and u>x, b(u-1, v, w, x, y, z), 0)+
`if`(v>w and v>y, b(u, v-1, w, x, y, z), 0)+
`if`(w>z, b(u, v, w-1, x, y, z), 0)+
`if`(x>y, b(u, v, w, x-1, y, z), 0)+
`if`(y>z, b(u, v, w, x, y-1, z), 0)+
`if`(z>0, b(u, v, w, x, y, z-1), 0))
end:
a:= n-> b(n$6):
seq(a(n), n=0..12); # Alois P. Heinz, Apr 26 2012
MATHEMATICA
b[u_, v_, w_, x_, y_, z_] := b[u, v, w, x, y, z] =
If[Union[{u, v, w, x, y, z}] == {0}, 1,
If[u>v && u>x, b[u-1, v, w, x, y, z], 0] +
If[v>w && v>y, b[u, v-1, w, x, y, z], 0] +
If[w>z, b[u, v, w-1, x, y, z], 0] +
If[x>y, b[u, v, w, x-1, y, z], 0] +
If[y>z, b[u, v, w, x, y-1, z], 0] +
If[z>0, b[u, v, w, x, y, z-1], 0]];
a[n_] := b[n, n, n, n, n, n]; Table[a[n], {n, 0, 12}] (* Jean-François Alcover, May 29 2015, after Alois P. Heinz *)
CROSSREFS
Cf. A114717.
Sequence in context: A326356 A200916 A346655 * A036772 A117011 A367957
KEYWORD
nonn,hard
AUTHOR
Mitch Harris, Dec 27 2005; corrected May 25 2006
EXTENSIONS
a(6)-a(11) from Alois P. Heinz, Apr 26 2012
STATUS
approved