login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(2*n) = F(3*n)*F(3*n+2), a(2*n+1) = F(3*n+1)*F(3*n+2), where F = A000045.
1

%I #12 Mar 29 2018 02:53:49

%S 0,1,10,15,168,273,3026,4895,54288,87841,974170,1576239,17480760,

%T 28284465,313679522,507544127,5628750624,9107509825,101003831722,

%U 163427632719,1812440220360,2932589879121,32522920134770,52623190191455

%N a(2*n) = F(3*n)*F(3*n+2), a(2*n+1) = F(3*n+1)*F(3*n+2), where F = A000045.

%H Robert Israel, <a href="/A114703/b114703.txt">Table of n, a(n) for n = 0..1593</a>

%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (0,17,0,17,0,-1).

%F G.f.: x*(1+10*x-2*x^2-2*x^3+x^4)/(1-17*x^2-17*x^4+x^6). - _Robert Israel_, Mar 29 2018

%p f:= gfun:-rectoproc({a(n)-17*a(n+2)-17*a(n+4)+a(n+6),seq(a(i) = [ 0, 1, 10, 15, 168, 273][i+1],i=0..5)},a(n),remember):

%p map(f, [$0..40]); # _Robert Israel_, Mar 29 2018

%t F[0] = 0; F[1] = 1; F[n_] := F[n] = F[n - 1] + F[n - 2] a = Flatten[Table[{F[3*n]*F[3*n + 2], F[3*n + 1]*F[3*n + 2]}, {n, 0, 17}]]

%Y Cf. A000045.

%K nonn

%O 0,3

%A _Roger L. Bagula_, Feb 21 2006

%E Edited by _N. J. A. Sloane_, Feb 11 2007