Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Oct 27 2019 20:58:25
%S 1,1,0,0,2,1,1,0,2,2,3,5,5,6,9,7,8,14,12,16,21,28,32,43,47,61,68,84,
%T 89,109,126,140,170,198,227,261,323,362,427,501,581,658,794,880,1036,
%U 1175,1355,1526,1776,1985,2281,2588,2943,3312,3799,4271,4852,5497
%N Number of partitions of n such that number of parts is equal to the sum of parts counted without multiplicities.
%C The Heinz numbers of these integer partitions are given by A324570. - _Gus Wiseman_, Mar 09 2019
%H Alois P. Heinz, <a href="/A114638/b114638.txt">Table of n, a(n) for n = 0..500</a>
%e a(10) = 3 because we have [5,1,1,1,1,1], [3,3,3,1] and [3,2,2,1,1,1].
%e From _Gus Wiseman_, Mar 09 2019: (Start)
%e The a(1) = 1 through a(12) = 5 integer partitions (empty columns not shown):
%e 1 22 221 3111 3311 333 3331 32222 33222
%e 211 41111 321111 322111 44111 322221
%e 511111 322211 332211
%e 332111 4221111
%e 4211111 6111111
%e (End)
%p a:=proc(n) local P,c,j,S: with(combinat): P:=partition(n): c:=0: for j from 1 to nops(P) do S:=convert(P[j],set): if nops(P[j])=sum(S[i],i=1..nops(S)) then c:=c+1 else c:=c fi: c: od: end: seq(a(n), n=0..35); # _Emeric Deutsch_, Mar 01 2006
%t a[n_] := Module[{P, c, j, S}, P = IntegerPartitions[n]; c = 0; For[j = 1, j <= Length[P], j++, S = Union[P[[j]]]; If[Length[P[[j]]] == Total[S], c++] ]; c];
%t Table[a[n], {n, 0, 60}] (* _Jean-François Alcover_, May 07 2018, after _Emeric Deutsch_ *)
%o (PARI) apply( A114638(n,s=0)={forpart(p=n,#p==vecsum(Set(p))&&s++); s}, [0..50]) \\ _M. F. Hasler_, Oct 27 2019
%Y Cf. A003114, A006141, A039900, A047993, A064174, A066328, A243149 (the same for compositions).
%Y Cf. A324516, A324518, A324520, A324521, A324570.
%Y Cf. A116861 (number of partitions of n having a given sum of distinct parts).
%K nonn
%O 0,5
%A _Vladeta Jovovic_, Feb 18 2006
%E More terms from _Emeric Deutsch_, Mar 01 2006