login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) is the number of hill-free Dyck paths of semilength n, having k ascents of length at least 2 (1 <= k <= floor(n/2), n >= 2).
1

%I #13 Jan 22 2019 16:47:36

%S 1,2,4,2,8,10,16,36,5,32,112,42,64,320,224,14,128,864,960,168,256,

%T 2240,3600,1200,42,512,5632,12320,6600,660,1024,13824,39424,30800,

%U 5940,132,2048,33280,119808,128128,40040,2574,4096,78848,349440,489216,224224,28028,429

%N Triangle read by rows: T(n,k) is the number of hill-free Dyck paths of semilength n, having k ascents of length at least 2 (1 <= k <= floor(n/2), n >= 2).

%C Row n has floor(n/2) terms. Row sums are the Fine numbers (A000957). T(n,1) = 2^(n-2). T(n,2) = n(n-3)2^(n-5) (n>4) (2*A001793). T(2n,n) = Catalan(n). T(2n+1,n) = n*Catalan(n+1). Sum_{k=1..floor(n/2)} k*T(n,k) yields A114594.

%C T(n,k) is the number of permutations pi of [n-1] with k valleys such that s(pi) avoids the patterns 132, 231, and 312, where s is West's stack-sorting map. - _Colin Defant_, Sep 16 2018

%H Colin Defant, <a href="https://arxiv.org/abs/1809.03123">Stack-sorting preimages of permutation classes</a>, arXiv:1809.03123 [math.CO], 2018.

%F T(n, k) = 2^(n-2k)*binomial(n+1, k)*binomial(n-k-1, k-1)/(n+1) (1 <= k <= floor(n/2)). G.f. = G-1, where G=G(t, z) satisfies z(2+tz)G^2 - (1+2z)G + 1 = 0.

%e T(4,2)=2 because we have (UU)D(UU)DDD and (UU)DD(UU)DD, where U=(1,1), D=(1,-1) (ascents of length at least two are shown between parentheses).

%e Triangle starts:

%e 1;

%e 2;

%e 4, 2;

%e 8, 10;

%e 16, 36, 5;

%e 32, 112, 42;

%e 64, 320, 224, 14;

%p T:=proc(n,k) if k<=floor(n/2) then 2^(n-2*k)*binomial(n+1,k)*binomial(n-k-1,k-1)/(n+1) else 0 fi end: for n from 2 to 14 do seq(T(n,k),k=1..floor(n/2)) od;

%t m = 13(*rows*); G = 0; Do[G = Series[(1 + G^2 (2 + t z) z)/(1 + 2 z), {t, 0, m+1}, {z, 0, m+1}] // Normal // Expand, {m+2}]; Rest[CoefficientList[ #, t]]& /@ CoefficientList[G-1, z][[3;;]] // Flatten (* _Jean-François Alcover_, Jan 22 2019 *)

%Y Cf. A000957, A001793, A114594.

%K nonn,tabf

%O 2,2

%A _Emeric Deutsch_, Dec 11 2005