login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of correct decimal digits given by the n-th convergent to the golden ratio.
1

%I #15 Jul 12 2020 15:02:10

%S 0,0,0,1,1,2,2,2,3,3,4,4,5,5,5,6,6,7,7,8,8,8,9,9,10,10,10,11,11,12,12,

%T 13,13,13,14,14,15,15,15,16,16,17,17,18,18,18,19,19,20,20,20,21,21,22,

%U 22,23,23,23,24,24,25,25,25,26,26,27,27,28,28,28,29,29,30,30,30,31,31

%N Number of correct decimal digits given by the n-th convergent to the golden ratio.

%H Colin Barker, <a href="/A114540/b114540.txt">Table of n, a(n) for n = 0..1000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GoldenRatio.html">Golden Ratio</a>

%H <a href="/index/Rec#order_13">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,0,0,0,0,0,0,0,1,-1).

%F From _Colin Barker_, Oct 28 2015: (Start)

%F a(n) = a(n-1)+a(n-12)-a(n-13) for n>12.

%F G.f.: -x^3*(x^17-x^16-x^9-x^7-x^5-x^2-1)/(x^13-x^12-x+1).

%F (End)

%t LinearRecurrence[{1,0,0,0,0,0,0,0,0,0,0,1,-1},{0,0,0,1,1,2,2,2,3,3,4,4,5,5,5,6,6,7,7,8,8},100] (* _Harvey P. Dale_, Jul 12 2020 *)

%o (PARI) concat(vector(3), Vec(-x^3*(x^17-x^16-x^9-x^7-x^5-x^2-1)/(x^13-x^12-x+1) + O(x^100))) \\ _Colin Barker_, Oct 28 2015

%Y Cf. A000045.

%K nonn,base,less,easy

%O 0,6

%A _Eric W. Weisstein_, Dec 07 2005