login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The n-th entry of the sequence is the value of the permanent of an n X n matrix M defined as follows: if we concatenate the rows of M to form a vector v of length n^2, v_i is the i-th Fibonacci number.
0

%I #4 Mar 30 2012 18:54:34

%S 1,132,1460808,6357011889600,44491520971919463292800,

%T 2082476039060691409777705387034081280,

%U 2712373659248840873249840585282508476815021942277876736

%N The n-th entry of the sequence is the value of the permanent of an n X n matrix M defined as follows: if we concatenate the rows of M to form a vector v of length n^2, v_i is the i-th Fibonacci number.

%C Conjecture: The rank of the matrix M is 2 for every n.

%H Simone Severini, <a href="http://www-users.york.ac.uk/~ss54">www-users.york.ac.uk/~ss54</a>.

%e For n=2, M=[0,1;1,0];

%e For n=3, M=[0,1,1;2,3,5;8,13,21].

%o (PARI) permRWNb(a)=n=matsize(a)[1];if(n==1,return(a[1,1]));sg=1;in=vectorv(n);x=in;x=a[,n]-sum(j=1,n,a[,j])/2;p=prod(i=1,n,x[i]);for(k=1,2^(n-1)-1,sg=-sg;j=valuation(k,2)+1;z=1-2*in[j];in[j]+=z;x+=z*a[,j];p+=prod(i=1,n,x[i],sg));return(2*(2*(n%2)-1)*p) for(n=1,23,a=matrix(n,n,i,j,fibonacci((i-1)*n+j-1));print1(permRWNb(a)",")) - Herman Jamke (hermanjamke(AT)fastmail.fm), May 15 2007

%K nonn

%O 2,2

%A _Simone Severini_, Feb 15 2006

%E More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), May 15 2007