login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Kekulé numbers for certain benzenoids.
0

%I #21 Oct 01 2023 11:02:10

%S 4,50,650,8500,111250,1456250,19062500,249531250,3266406250,

%T 42757812500,559707031250,7326660156250,95907226562500,

%U 1255441894531250,16433947753906250,215123168945312500,2815998840332031250

%N Kekulé numbers for certain benzenoids.

%D S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 205).

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (15,-25).

%F a(n) = 2*((sqrt(5) + 2)((15 + 5*sqrt(5))/2)^(n-1) + (sqrt(5) - 2)*((15 - 5*sqrt(5))/2)^(n-1))/sqrt(5).

%F From _Colin Barker_, Aug 30 2013: (Start)

%F a(n) = 15*a(n-1) - 25*a(n-2).

%F G.f.: -2*x*(5*x-2) / (25*x^2 - 15*x + 1). (End)

%p a:=2*((sqrt(5)+2)*((15+5*sqrt(5))/2)^(n-1)+(sqrt(5)-2)*((15-5*sqrt(5))/2)^(n-1))/sqrt(5): seq(expand(a(n)),n=1..20);

%t LinearRecurrence[{15,-25},{4,50},20] (* _Harvey P. Dale_, Oct 01 2023 *)

%K nonn

%O 1,1

%A _Emeric Deutsch_, Nov 30 2005