Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Jul 01 2023 02:44:58
%S 4,5,5,6,7,7,8,8,9,9,10,10,11,11,11,12,12,13,13,13,14,14,14,14,15,15,
%T 15,16,16,16,16,17,17,17,17,18,18,18,18,19,19,19,19,20,20,20,20,20,21,
%U 21,21,21,22,22,22,22,22,23,23,23,23,23,23,24,24,24,24,24,25,25,25,25,25
%N Integer part of sqrt(n)+sqrt(n+1)+sqrt(n+2).
%D Prapanpong Pongsriiam, Analytic Number Theory for Beginners, 2nd edition, American Mathematical Society, 2023.
%H John D. Cook, <a href="https://www.johndcook.com/blog/2023/06/30/floors-and-roots/">Floors and roots</a>.
%H F. D. Hammer, <a href="http://www.jstor.org/stable/2323071">Problem E3010</a>, Amer. Math. Monthly, 95, 1988, 133-134.
%H X. Zhan, <a href="http://dx.doi.org/10.1007/BF02985850">Formulae for sums of consecutive square roots</a>, The Math. Intelligencer, 27, No. 4, 2005, 4-5.
%F a(n) = floor(sqrt(9n+8)).
%p seq(floor(sqrt(9*n+8)),n=1..90);
%t IntegerPart/@(Total/@Partition[Sqrt[Range[80]],3,1]) (* _Harvey P. Dale_, May 03 2013 *)
%o (PARI) vector(80, n, sqrtint(9*n+8)) \\ _Michel Marcus_, Jun 27 2015
%o (Magma) [Floor(Sqrt(9*n+8)): n in [1..70]]; // _Vincenzo Librandi_, Jun 28 2015
%Y Cf. A000267, A114459, A114460.
%K nonn
%O 1,1
%A _Emeric Deutsch_, Nov 28 2005