%I #12 Mar 11 2014 01:32:17
%S 0,0,1,0,0,1,0,1,2,1,0,0,0,0,1,0,1,1,1,2,1,0,0,2,0,3,4,1,0,1,0,1,4,3,
%T 2,1,0,0,1,0,0,4,3,0,1,0,1,2,1,1,1,4,1,8,1,0,0,0,0,2,0,5,0,0,4,1,0,1,
%U 1,1,3,1,6,1,1,9,2,1,0,0,2,0,4,4,0,0,8,6,3,4,1,0,1,0,1,0,3,1,1,0,5,4,9,2,1
%N Array a(n,k) = n^k (mod k) read by antidiagonals (k>=1, n>=1).
%C Alternate description: triangular array a(n, k) = n^k (mod k) read by rows (n > 1, 0 < k < n). This is equivalent because a(n, k) = a(n-k, k). - _David Wasserman_, Jan 25 2007
%e 2^6 = 64 and 64 (mod 6) is 4. So a(2,6) = 4.
%t a[n_, k_] := Mod[n^k, k]; Table[a[n - k + 1, k], {n, 1, 14}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Dec 12 2012 *)
%Y Cf. A051127, A051128, A094263. Transpose of A060154. First 13 rows are A057427(n-1), A015910, A066601, A066602, A066603, A066604, A066438, A066439, A066440, A056969, A066441, A066442, A116609. First 12 columns are A000004, A000035, A010872, A000035, A010874, A070431, A010876, A000035, A021559(n+1), A008959, A010880, A070435.
%K easy,nonn,tabl
%O 1,9
%A _Leroy Quet_, Feb 14 2006
%E More terms from _David Wasserman_, Jan 25 2007