login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Indices of 6-almost prime triangular numbers.
5

%I #32 Mar 01 2023 06:41:49

%S 32,48,96,99,104,111,119,120,125,152,161,168,176,188,189,195,200,208,

%T 223,231,239,240,252,260,264,275,299,300,303,304,315,336,342,343,344,

%U 352,359,363,374,377,391,392,395,400

%N Indices of 6-almost prime triangular numbers.

%H Vincenzo Librandi, <a href="/A114437/b114437.txt">Table of n, a(n) for n = 1..1000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/AlmostPrime.html">Almost Prime</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/TriangularNumber.html">Triangular Number</a>.

%F {a(n)} = {k such that A001222(A000217(k)) = 6}. {a(n)} = {k such that k*(k+1)/2 has exactly 6 prime factors, with multiplicity}.

%F {a(n)} = {k such that A000217(k) is an element of A046306}.

%F { m : A069904(m) = 6 }. - _Alois P. Heinz_, Aug 05 2019

%e a(1) = 48 because T(48) = TriangularNumber(48) = 48*(48+1)/2 = 1176 = 2^3 * 3 * 7^2 is a 6-almost prime.

%e a(2) = 96 because T(96) = 96*(96+1)/2 = 4656 = 2^4 * 3 * 97 is a 6-almost prime.

%e a(18) = 200 because T(200) = 200*(200+1)/2 = 20100 = 2^2 * 3 * 5^2 * 67 is a 6-almost prime.

%e a(29) = 300 because T(300) = 300*(300+1)/2 = 45150 = 2 * 3 * 5^2 * 7 * 43 is a 6-almost prime.

%e a(38) = 363 because T(363) = 363*(363+1)/2 = 45150 = 66066 = 2 * 3 * 7 * 11^2 * 13 is a 6-almost prime.

%t Select[Range[400],PrimeOmega[(#(#+1))/2]==6&] (* _Harvey P. Dale_, Mar 29 2012 *)

%t Flatten[Position[Accumulate[Range[800]], _?(PrimeOmega[#]== 6 &)]] (* _Vincenzo Librandi_, Apr 09 2014 *)

%o (PARI) isA114437(n)=bigomega(n*(n+1)/2)==6 /* _Michael B. Porter_, Mar 30 2012 */

%Y Cf. A000217, A001222, A046306, A069904.

%K easy,nonn

%O 1,1

%A _Jonathan Vos Post_, Feb 14 2006

%E Corrected by _Harvey P. Dale_, Mar 29 2012