login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Records in semiprime gaps ordered by merit.
16

%I #18 Oct 30 2018 09:40:02

%S 2,3,4,6,11,19,24,28,30,32,38,47,54,70,74,107,110,112,120,126,146

%N Records in semiprime gaps ordered by merit.

%C There is an associated index list n = 1, 2, 4, 6, 34, 422, 1765, 4585, 8112, 8650, 8861, 75150, ... and an associated semiprime list A001358(n) = 4, 6, 10, 15, 1418, 6559, 17965, 32777, 35103, 35981, 340894, ... - _R. J. Mathar_, Mar 15 2009

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Semiprime.html">Semiprime.</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PrimeGaps.html">Prime Gaps.</a>

%F a(n) = records in A065516/log(A001358(n)) = records in (A001358(n+1) - A001358(n))/log(A001358(n))).

%e Records defined in terms of A065516 and A001358:

%e .

%e n A065516(n) A065516(n)/log_10(A001358(n))

%e = ========== ==============================

%e 1 2 2 / log_10(4) = 3.32192809...

%e 2 3 3 / log_10(6) = 3.85529162...

%e 3 1 1 / log_10(9) = 1.04795163...

%e 4 4 4 / log_10(10) = 4.00000000

%e 5 1 1 / log_10(14) = 0.87250286...

%e 6 6 6 / log_10(15) = 5.10164492...

%e 7 1 1 / log_10(21) = 0.75630419...

%e 8 3 3 / log_10(22) = 2.23476557...

%e 9 1 1 / log_10(25) = 0.71533827...

%t sp = 4; m0 = 0; l = {}; lim = 1000000;

%t For[i = 5, i <= lim, i++, If[PrimeOmega[i] == 2, m = (i - sp)/Log[sp]; If[m > m0, m0 = m; AppendTo[l, i - sp]]; sp = i] ]; l (* _Robert Price_, Oct 29 2018 *)

%Y Cf. A001358, A065516, A111870, A111871, A113688-A113693, A114403-A114411, A114412-A114422.

%K nonn,more

%O 1,1

%A _Jonathan Vos Post_, Nov 25 2005

%E Corrected and extended by _Charles R Greathouse IV_, Oct 05 2006

%E a(16)-a(21) from _Donovan Johnson_, Feb 17 2010