The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A114348 The integer difference between (the n-dimensional unit sphere surface area minus the (n+1)-dimensional unit sphere volume) and the (n+2)-dimensional unit sphere volume. 1
 -6, -3, 2, 9, 16, 22, 25, 26, 25, 22, 18, 14, 10, 7, 5, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS a(n) = 0 for n >= 19. - G. C. Greubel, Feb 06 2021 REFERENCES D. M. Y Sommerville, An Introduction to the Geometry of n dimensions, Dover Publications (1958), pages 136-137. LINKS Wikipedia, Hypersphere. FORMULA Let v(n) = pi^(n/2)/Gamma(n/2+1) be the volume of the n-dimensional unit sphere and s(n) = 2*Pi^(n/2)/Gamma(n/2) be its surface content. Then a(n) = floor(s(n)-v(n+1)-v(n+2)). MATHEMATICA Table[Floor[ (Pi^(n/2)/2)*( (n*(n+2)-2*Pi)/Gamma[n/2 +2] - 2*Sqrt[Pi]/Gamma[(n+3)/2])], {n, 50}] (* G. C. Greubel, Feb 06 2021 *) CROSSREFS Cf. A138219. Sequence in context: A076214 A011488 A021162 * A280680 A272083 A096840 Adjacent sequences:  A114345 A114346 A114347 * A114349 A114350 A114351 KEYWORD sign,less AUTHOR Roger L. Bagula, Feb 08 2006; corrected Feb 08 2006 EXTENSIONS Signs reintroduced by R. J. Mathar, Jul 23 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 19 11:33 EDT 2021. Contains 347556 sequences. (Running on oeis4.)