login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle, read by rows, where the g.f. of column n, C_n(x), equals the g.f. of row n, R_n(x), divided by (1-x)^(n+1)*(1-x^2)^n, for n>=0; e.g., C_n(x) = R_n(x)/(1-x)^(n+1)/(1-x^2)^n.
3

%I #6 Jun 13 2017 23:40:22

%S 1,1,1,1,3,1,1,6,6,1,1,10,18,10,1,1,15,43,43,15,1,1,21,86,135,87,21,1,

%T 1,28,156,345,345,159,28,1,1,36,260,771,1083,777,267,36,1,1,45,410,

%U 1557,2901,2927,1577,423,45,1,1,55,615,2913,6909,9219,7001,2973,637,55,1

%N Triangle, read by rows, where the g.f. of column n, C_n(x), equals the g.f. of row n, R_n(x), divided by (1-x)^(n+1)*(1-x^2)^n, for n>=0; e.g., C_n(x) = R_n(x)/(1-x)^(n+1)/(1-x^2)^n.

%F T(n,k) = Sum_{j=0..k} T(k,j)*Sum_{i=0..n-j-k} (-1)^(n-i-j-k)*C(2k+i,i)*C(n-i-j-1,n-i-j-k) for n>k with T(n,n)=1 for n>=0. - _Paul D. Hanna_, Jun 21 2006

%e Triangle begins:

%e 1;

%e 1,1;

%e 1,3,1;

%e 1,6,6,1;

%e 1,10,18,10,1;

%e 1,15,43,43,15,1;

%e 1,21,86,135,87,21,1;

%e 1,28,156,345,345,159,28,1;

%e 1,36,260,771,1083,777,267,36,1;

%e 1,45,410,1557,2901,2927,1577,423,45,1;

%e 1,55,615,2913,6909,9219,7001,2973,637,55,1; ...

%e where g.f. for columns is formed from g.f. of rows:

%e column 2: (1 + 3*x + 1*x^2)/(1-x)^3/(1-x^2)^2 = 1 + 6*x + 18*x^2 + 43*x^3 + 86*x^4 + 156*x^5 +...

%e column 3: (1 + 6*x + 6*x^2 + 1*x^3)/(1-x)^4/(1-x^2)^3 = 1 + 10*x + 43*x^2 + 135*x^3 + 345*x^4 + 771*x^5 +...

%e column 4: (1 + 10*x + 18*x^2 + 10*x^3 + 1*x^4)/(1-x)^5/(1-x^2)^4 = 1 + 15*x + 87*x^2 + 345*x^3 + 1083*x^4 + 2901*x^5 +...

%o (PARI) T(n,k)=if(n<k || k<0,0,if(n==k || k==0,1, polcoeff(sum(j=0,k,T(k,j)*x^j)/(1-x+x*O(x^(n-k)))^(k+1)/(1-x^2)^k,n-k)))

%o (PARI) {T(n,k)=if(n==k,1,sum(j=0,k,T(k,j)*sum(i=0,n-j-k, (-1)^(n-i-j-k)*binomial(2*k+i,i)*binomial(n-i-j-1,n-i-j-k))))} - _Paul D. Hanna_, Jun 21 2006

%Y Cf. A114177 (row sums), A114174 (central terms), A114175 (row sums-square).

%K nonn,tabl

%O 0,5

%A _Paul D. Hanna_, Nov 15 2005