login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f.: (3-log(1-2*x))/(1-2*x)^(1/2).
2

%I #17 Mar 17 2017 22:04:39

%S 3,5,17,91,667,6213,70233,933819,14277555,246772485,4757596065,

%T 101218975515,2355535057995,59520844736325,1622874515042025,

%U 47490277029572475,1484579154624005475,49374909670517201925

%N E.g.f.: (3-log(1-2*x))/(1-2*x)^(1/2).

%D C. Dement, Floretion Integer Sequences (work in progress)

%H G. C. Greubel, <a href="/A114161/b114161.txt">Table of n, a(n) for n = 0..400</a>

%F a(n) = 2^n*GAMMA(n+1/2)/Pi^(1/2)*(3+Psi(n+1/2) + gamma + 2*log(2)). - _Vladeta Jovovic_

%t Range[0, 17]!CoefficientList[ Series[(3 - Log[1 - 2x])/Sqrt[(1 - 2x)], {x, 0, 17}], x] (* or *)

%t f[n_] := FullSimplify[ 2^n*Gamma[n + 1/2]/Sqrt[Pi]*(3 + PolyGamma[n + 1/2] + EulerGamma + 2Log[2])]; Table[ f[n], {n, 0, 17}] (* _Robert G. Wilson v_ *)

%o (PARI) { my(x = xx + O(xx^30)); Vec(serlaplace((3-log(1-2*x))/(1-2*x)^(1/2))) } \\ _Michel Marcus_, Jul 06 2015

%Y Cf. A114160.

%K nonn

%O 0,1

%A _Creighton Dement_, Nov 14 2005

%E E.g.f. from _Vladeta Jovovic_

%E More terms from _Robert G. Wilson v_, Nov 15 2005