Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Jul 22 2018 08:48:18
%S 1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,
%T 0,0,5,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,15,0,0,0,
%U 0,0,0,0,0,22,0,0,0,0,0,0,0,0,30,0,0,0,0,0,0,0,0,42,0,0,0,0,0,0,0,0,56,0,0,0
%N Number of partitions of n into parts with digital root = 9.
%C a(n) = A114102(n) - A116371(n) - A116372(n) - A116373(n) - A116374(n) - A116375(n) - A116376(n) - A116377(n) - A116378(n).
%H Antti Karttunen, <a href="/A114099/b114099.txt">Table of n, a(n) for n = 0..19683</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DigitalRoot.html">Digital Root</a>
%F a(n) = A000041(floor(n/9))*0^(n mod 9).
%F a(9n) = A000041(n) and for all others a(n) = 0. [_Robert G. Wilson v_, Apr 25 2010]
%e a(27) = #{27, 18+9, 9+9+9} = 3.
%t f[n_] := PartitionsP[n/9] If[Mod[n, 9] == 0, 1, 0]; Array[f, 105] (* _Robert G. Wilson v_, Apr 25 2010 *)
%o (PARI) A114099(n) = if((n%9), 0, numbpart(n/9)); \\ _Antti Karttunen_, Jul 22 2018
%Y Cf. A000041, A010888, A035444, A147706.
%K nonn,base
%O 0,19
%A _Reinhard Zumkeller_, Feb 12 2006