Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Jun 26 2024 04:25:42
%S 1,11,101,1011,10001,100111,1000001,10001011,100000101,1000010011,
%T 10000000001,100000101111,1000000000001,10000001000011,
%U 100000000010101,1000000010001011,10000000000000001,100000000100100111
%N a(n) = Sum_{ k, k|n } 10^(k-1).
%C A034729 to base 2. Stacking elements of the sequence gives A113998.
%H Seiichi Manyama, <a href="/A113999/b113999.txt">Table of n, a(n) for n = 1..1000</a>
%F G.f.: Sum_{n>0} x^n/(1-10*x^n).
%F a(n) ~ 10^(n-1). - _Vaclav Kotesovec_, Jun 05 2021
%t A113999[n_]:= DivisorSum[n, 10^(#-1) &];
%t Table[A113999[n], {n, 40}] (* _G. C. Greubel_, Jun 26 2024 *)
%o (PARI) a(n)=if(n<1,0,sumdiv(n,k,10^(k-1)));
%o (Magma)
%o A113999:= func< n | (&+[10^(d-1): d in Divisors(n)]) >;
%o [A113999(n): n in [1..40]]; // _G. C. Greubel_, Jun 26 2024
%o (SageMath)
%o def A113999(n): return sum(10^(k-1) for k in (1..n) if (k).divides(n))
%o [A113999(n) for n in range(1,41)] # _G. C. Greubel_, Jun 26 2024
%Y Sums of the form Sum_{d|n} q^(d-1): A034729 (q=2), A034730 (q=3), this sequence (q=10), A339684 (q=4), A339685 (q=5), A339686 (q=6), A339687 (q=7), A339688 (q=8), A339689 (q=9).
%K easy,nonn
%O 1,2
%A _Paul Barry_, Nov 12 2005