%I #7 Oct 05 2011 08:52:25
%S 107,848,871,966,1110
%N (RSA-2048)-10^n = prime where RSA-2048 is the 617 decimal digit unfactored RSA challenge number.
%C This sequence shows that the difference between a composite number and a prime rests on the modification of a single decimal digit of the given composite integer.
%e (RSA-2048)- 10^107 = prime
%t Position[PrimeQ[Table[ \
%t 251959084756578934940271832400483985714292821262040320277771378360436620207075\
%t 955562640185258807844069182906412495150821892985591491761845028084891200728449\
%t 926873928072877767359714183472702618963750149718246911650776133798590957000973\
%t 304597488084284017974291006424586918171951187461215151726546322822168699875491\
%t 824224336372590851418654620435767984233871847744479207399342365848238242811981\
%t 638150106748104516603773060562016196762561338441436038339044149526344321901146\
%t 575444541784240209246165157233507787077498171257724679629263863563732899121548\
%t 31438167899885040445364023527381951378636564391212010397122822120720357 - \
%t 10^n, {n, 1617}]], True]
%o (PARI) \\ Set N to RSA-2048
%o for(n=1, 617, if(ispseudoprime(N-10^n), print1(n", ")))
%K nonn,base,fini,full
%O 1,1
%A Joao da Silva (zxawyh66(AT)yahoo.com), Jan 30 2006