login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113802
Numbers that are congruent to {2, 12} mod 14.
6
2, 12, 16, 26, 30, 40, 44, 54, 58, 68, 72, 82, 86, 96, 100, 110, 114, 124, 128, 138, 142, 152, 156, 166, 170, 180, 184, 194, 198, 208, 212, 222, 226, 236, 240, 250, 254, 264, 268, 278, 282, 292, 296, 306, 310, 320, 324, 334, 338, 348, 352, 362, 366, 376, 380
OFFSET
1,1
FORMULA
a(n) = 14*n - a(n-1) - 14 (with a(1) = 2). - Vincenzo Librandi, Nov 13 2010
From Wolfdieter Lang, Dec 15 2011: (Start)
a(n) = 7*n-(7-3*(-1)^n)/2.
O.g.f.: 2*x*(1+5*x+x^2)/((1+x)*(1-x)^2).
See the contribution of Bruno Berselli under A113801. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = cot(Pi/7)*Pi/14. - Amiram Eldar, Dec 30 2021
From Amiram Eldar, Nov 25 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = cosec(Pi/7)*sin(3*Pi/14).
Product_{n>=1} (1 + (-1)^n/a(n)) = cosec(Pi/7)*sin(Pi/14). (End)
MATHEMATICA
Select[Range[400], MemberQ[{2, 12}, Mod[#, 14]]&] (* Harvey P. Dale, Oct 30 2011 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Giovanni Teofilatto, Jan 22 2006
STATUS
approved