login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers that are congruent to {1, 13} mod 14.
24

%I #50 Nov 27 2024 07:26:53

%S 1,13,15,27,29,41,43,55,57,69,71,83,85,97,99,111,113,125,127,139,141,

%T 153,155,167,169,181,183,195,197,209,211,223,225,237,239,251,253,265,

%U 267,279,281,293,295,307,309,321,323,335,337,349,351,363,365,377,379

%N Numbers that are congruent to {1, 13} mod 14.

%C If 14k+1 is a perfect square..(0,12,16,52,60,120..) then the square root of 14k+1 = a(n) - _Gary Detlefs_, Feb 22 2010

%C More generally, these numbers are of the form (2*h*n+(h-4)*(-1)^n-h)/4 (h, n natural numbers), therefore ((2*h*n+(h-4)*(-1)^n-h)/4)^2-1==0 (mod h); in our case, a(n)^2-1==0 (mod 14). Also a(n)^2-1==0 (mod 28). - _Bruno Berselli_, Oct 26 2010 - Nov 17 2010

%H Reinhard Zumkeller, <a href="/A113801/b113801.txt">Table of n, a(n) for n = 1..10000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1).

%F a(n) = 14*(n-1)-a(n-1), n>1. - _R. J. Mathar_, Jan 30 2010

%F From _Bruno Berselli_, Oct 26 2010: (Start)

%F a(n) = -a(-n+1) = (14*n+5*(-1)^n-7)/2.

%F G.f.: x*(1+12*x+x^2)/((1+x)*(1-x)^2).

%F a(n) = a(n-2)+14 for n>2.

%F a(n) = 14*A000217(n-1)+1 - 2*sum[i=1..n-1] a(i) for n>1. (End)

%F a(0)=1, a(1)=13, a(2)=15, a(n)=a(n-1)+a(n-2)-a(n-3). - _Harvey P. Dale_, May 11 2011

%F Sum_{n>=1} (-1)^(n+1)/a(n) = (Pi/14)*cot(Pi/14). - _Amiram Eldar_, Dec 04 2021

%F E.g.f.: 1 + ((14*x - 7)*exp(x) + 5*exp(-x))/2. - _David Lovler_, Sep 04 2022

%F From _Amiram Eldar_, Nov 25 2024: (Start)

%F Product_{n>=1} (1 - (-1)^n/a(n)) = 2*cos(Pi/14).

%F Product_{n>=2} (1 + (-1)^n/a(n)) = (Pi/14)*cosec(Pi/14). (End)

%t LinearRecurrence[{1,1,-1},{1,13,15},60] (* or *) Select[Range[500], MemberQ[{1,13},Mod[#,14]]&] (* _Harvey P. Dale_, May 11 2011 *)

%o (Haskell)

%o a113801 n = a113801_list !! (n-1)

%o a113801_list = 1 : 13 : map (+ 14) a113801_list

%o -- _Reinhard Zumkeller_, Jan 07 2012

%o (PARI) a(n)=n\2*14-(-1)^n \\ _Charles R Greathouse IV_, Sep 15 2015

%Y Cf. A000217, A113802, A113803, A113804, A113805, A113806, A113807, A008589, A045472 (primes), A195145 (partial sums), A005408, A047209, A007310, A047336, A047522, A056020, A090771, A175885, A091998, A175886, A175887.

%K nonn,easy

%O 1,2

%A _Giovanni Teofilatto_, Jan 22 2006

%E Corrected and extended by _Giovanni Teofilatto_, Nov 14 2008

%E Replaced the various formulas by a correct one - _R. J. Mathar_, Jan 30 2010