

A113777


Minimal positive number m for which Sum_{k=1..m} k^n < m!.


1



3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 67, 68, 69, 70, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87, 89, 90
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

a(n) > n, with a(n)/n > 1 as n > infinity.  Robert Israel, May 28 2018


LINKS

Robert Israel, Table of n, a(n) for n = 0..7485


FORMULA

Let S(n, m) = Sum_{k=1..m} k^n. Define a(n) = min{ m  S(n, m)<m! }.


EXAMPLE

a(3)=6 because S(3,6)=441<720=6! but S(3,5)=225>=120=5! and so for S(3,j), j=0,1,2,3,4.


MAPLE

f:= proc(n) local k, L;
L:= sum(k^n, k=1..n);
for k from n+1 do
L:= L + k^n;
if L < k! then return k fi
od
end proc:
map(f, [$0..100]); # Robert Israel, May 28 2018


PROG

(PARI) a(n) = {my(s = 0, ok = 0, m = 1); until (ok, s += m^n; if (s < m!, ok = 1, m++); ); return (m); } \\ Michel Marcus, Jul 15 2013


CROSSREFS

Sequence in context: A288228 A002328 A039133 * A285659 A256421 A253200
Adjacent sequences: A113774 A113775 A113776 * A113778 A113779 A113780


KEYWORD

nonn


AUTHOR

Hieronymus Fischer, Jan 19 2006


STATUS

approved



