The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A113754 Number of possible squares on an n^2 X n^2 grid. 1
 1, 30, 285, 1496, 5525, 16206, 40425, 89440, 180441, 338350, 597861, 1005720, 1623245, 2529086, 3822225, 5625216, 8087665, 11389950, 15747181, 21413400, 28686021, 37910510, 49485305, 63866976, 81575625, 103200526, 129406005, 160937560, 198628221, 243405150 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Colin Barker, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1). FORMULA a(n) = n^2*(n^2+1)*(2*n^2+1)/6. a(n) = Sum_{k=1..n^2} k^2. - L. Edson Jeffery, Sep 05 2013; corrected by Bruno Berselli, Sep 06 2013 G.f.: x*(1+x)*(1+4*x+x^2)*(1+18*x+x^2) / (1-x)^7. - Colin Barker, Mar 22 2016 EXAMPLE a(2) = 30 because 4^2+3^2+2^2+1^2 = 30. MAPLE seq((n^2)*(n^2+1)*(2*n^2+1)/6, n=1..40); MATHEMATICA For[n = 1, n < 30, n++, Print[n^2(n^2 + 1)(2n^2 + 1)/6]] (Steinerberger) PROG (PARI) Vec(x*(1+x)*(1+4*x+x^2)*(1+18*x+x^2)/(1-x)^7 + O(x^50)) \\ Colin Barker, Mar 22 2016 (Python) def a(n): return n**2 * (n**2+1) * (2*n**2+1) // 6 print([a(n) for n in range(1, 31)]) # Michael S. Branicky, Jan 30 2021 CROSSREFS Sequence in context: A259455 A270852 A229427 * A129029 A101381 A061605 Adjacent sequences: A113751 A113752 A113753 * A113755 A113756 A113757 KEYWORD nonn,easy AUTHOR Robin Hallett (hallettr(AT)uogueplh.ca), Jan 18 2006 EXTENSIONS More terms from Stefan Steinerberger, Jan 21 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 26 21:28 EST 2024. Contains 370352 sequences. (Running on oeis4.)